Skip to main content
Log in

Asymmetrically Functionalized 1,3-Di(2-pyridyl)benzenes: Synthesis and Photophysical Studies

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A convenient synthetic approach to asymmetrically functionalized 1,3-di(2-pyridyl)benzenes starting from 3-(3-bromophenyl)-1,2,4-triazines using sequential aza-Diels–Alder reactions and Stille cross-coupling is reported. Photophysical properties of the obtained compounds are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author (Igor L. Nikonov) upon reasonable request.

Code Availability

Legally obtained software was used for the manuscript preparation and for the data collection and analysis.

References

  1. I-Jen C, Yun C, Tai-Nan D, Hsiao-Yun K, Bi-Hai T (2015) Heteroleptic Ir(III) phosphors with bis-tridentate chelating architecture for high efficiency OLEDs. US Patent 9,219,237 B1.

  2. Tasuku S, Norio S, Wataru S, Tasuku S, Norio S (2007) Organometallic Complex, Luminescent Solid, Organic el Element and Organic el Display. US Patent 2007/0224447 A1.

  3. Jae JB, Young JS, Joon KH, Hoon LD, Young LJ, Hwan SC (2013) New heterocyclic compounds and organic electronic device using the same. KR Patent 10-2013-0135178 A.

  4. Tong B, Ku H-Y, Chen I-J, Chi Y, Kao H-C, Yeh C-C, Chang C-H, Liu S-H, Lee G-H, Chou P-T (2015) Heteroleptic Ir(III) phosphors with bis-tridentatechelating architecture for high efficiency OLEDs. J Mater Chem C 3(14):3460–3471. https://doi.org/10.1039/C5TC00163C

    Article  CAS  Google Scholar 

  5. Wang Z, Turner E, Mahoney V, Madakuni S, Groy T, Li J (2010) Facile synthesis and characterization of phosphorescent Pt(N∧C∧N)X complexes. Inorg Chem 49(24):11276–11286. https://doi.org/10.1021/ic100740e

    Article  CAS  PubMed  Google Scholar 

  6. Kui SCF, Chow PK, Tong GSM, Lai S-L, Cheng G, Kwok C-C, Low K-H, Ko MY, Che C-M (2013) Robust phosphorescent platinum(II) complexes containing tetradentate O^N^C^N ligands: excimeric excited state and application in organic white-light-emitting diodes. Chem Eur J 19(1):69–73. https://doi.org/10.1002/chem.201203687

    Article  CAS  PubMed  Google Scholar 

  7. Cinninger LM, Bastatas LD, Shen Y, Holliday BJ, Slinker JD (2019) Luminescent properties of a 3,5-diphenylpyrazolebridged Pt(II) dimer. Dalton Trans 48(26):9684–9691. https://doi.org/10.1039/C9DT00795D

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Zhang G, Lu J, Jia J, Li W, Huang F, Cao Y (2015) An alcohol soluble amino-functionalized organoplatinum(II) complex as the cathode interlayer for highly efficient polymer solar cells. J Mater Chem C 3(17):4372–4379. https://doi.org/10.1039/C5TC00452G

    Article  CAS  Google Scholar 

  9. Katagiri S, Sakamoto R, Maeda H, Nishimori Y, Kurita T, Nishihara H (2013) Terminal Redox-Site effect on the long-range electron conduction of Fe(tpy)2 oligomer wires on a gold electrode. Chem Eur J 19(16):5088–5096. https://doi.org/10.1002/chem.201203913

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Lu W, Che C-M (2013) Luminescent pincer-type cyclometalated Platinum(II) complexes with auxiliary isocyanide ligands: phase-transfer preparation, solvatomorphism, and self-aggregation. Organometallics 32(1):350–353. https://doi.org/10.1021/om300965b

    Article  CAS  Google Scholar 

  11. Vezzu DAK, Lu Q, Chen Y-H, Huo S (2014) Cytotoxicity of cyclometalated platinum complexes based on tridentate NCN and CNN-coordinating ligands: Remarkable coordination dependence. J Inorg Biochem 134:49–56. https://doi.org/10.1016/j.jinorgbio.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi H, Clarkson GJ, Sadler PJ (2019) Dual action photosensitive Platinum(II) anticancer prodrugs with photoreleasable azide ligands. Inorg Chim Acta 489:230–235. https://doi.org/10.1016/j.ica.2019.02.016

    Article  CAS  Google Scholar 

  13. Dyker G, Gabler M, Nouroozian M, Schulz P (1994) Isoquinolines as receptors for resorcinol. Tetrahedron Lett 35(52):9697–9700. https://doi.org/10.1016/0040-4039(94)88362-9

    Article  CAS  Google Scholar 

  14. Bönnemann H (1978) Cobalt-catalyzed pyridine syntheses from alkynes and nitriles. Angew Chem Int Ed Engl 17:505–515. https://doi.org/10.1002/anie.197805051

    Article  Google Scholar 

  15. Biller SA, Sofia MJ, DeLange B, Forster C, Gordon EM, Harrity T, Rich LC, Ciosek CP Jr (1991) The first potent inhibitor of squalene synthase: a profound contribution of an ether oxygen to inhibitor-enzyme interaction. J Am Chem Soc 113:8522–8524. https://doi.org/10.1021/ja00022a050

    Article  CAS  Google Scholar 

  16. Allan KM, Hong BD, Stoltz BM (2009) Expedient synthesis of 3-hydroxyisoquinolines and 2-hydroxy-1,4-naphthoquinones via one-pot aryne acyl-alkylation/condensation. Org Biomol Chem 7:4960–4964. https://doi.org/10.1039/B913336D

    Article  CAS  PubMed  Google Scholar 

  17. Gildea LF, Batsanov AS, Williams JAG (2013) Bright orange/red-emitting Rhodium(III) and Iridium(III) complexes: tridentate N^C^N-cyclometallating ligands lead to high luminescence efficiencies. Dalton Trans 42:10388–10393. https://doi.org/10.1039/C3DT51211H

    Article  CAS  PubMed  Google Scholar 

  18. Kozhevnikov VN, Donnio B, Bruce DW (2008) Phosphorescent, terdentate, liquid-crystalline complexes of Platinum(II): stimulus-dependent emission. Angew Chem Int Ed 47(33):6286–6289. https://doi.org/10.1002/anie.200802101

    Article  CAS  Google Scholar 

  19. Pfueller OC, Sauer J (1998) The new and simple ‘LEGO’ system for the synthesis of thienyl substituted 2,6-oligopyridines. Tetrahedron Lett 39(48):8821–8824. https://doi.org/10.1016/S0040-4039(98)02043-7

    Article  Google Scholar 

  20. Stanforth SP, Tarbit B, Watson MD (2003) Synthesis of 2,2′-bipyridyl derivatives using aza Diels-Alder methodology. Tetrahedron Lett 44(4):693–694. https://doi.org/10.1016/S0040-4039(02)02670-9

    Article  CAS  Google Scholar 

  21. Prokhorov AM, Kozhevnikov DN (2012) Reactions of triazines and tetrazines with dienophiles (Review). Chem Heterocycl Compd 48(8):1153–1176. https://doi.org/10.1007/s10593-012-1117-9

    Article  CAS  Google Scholar 

  22. Kopchuk DS, Nikonov IL, Khasanov AF, Gundala S, Krinochkin AP, Slepukhin PA, Zyryanov GV, Venkatapuram P, Chupakhin ON, Charushin VN (2019) One-step synthesis of 1,4-bis(het)arylisoquinolines by the reaction of 1,2,4-triazines with arynes. Chem Heterocycl Compd 55(10):978–984. https://doi.org/10.1007/s10593-019-02565-8

    Article  CAS  Google Scholar 

  23. Kopchuk DS, Khasanov AF, Kovalev IS, Zyryanov GV, Kim GA, Nikonov IL, Rusinov VL, Chupakhin ON (2014) The extension of conjugated system in pyridyl-substituted monoazatriphenylenes for the tuning of photophysical properties. Chem Heterocycl Compd 50(6):871–879. https://doi.org/10.1007/2Fs10593-014-1541-0

    Article  CAS  Google Scholar 

  24. Shabunina OV, Yu KD, Krinochkin AP, Kim GA, Kopchuk DS, Zyryanov GV, Fi L, Chupakhin ON (2017) π-Extended fluorophores based on 5-aryl-2,2’-bipyridines: synthesis and photophysical studies. Mendeleev Commun 27(6):602–604. https://doi.org/10.1016/j.mencom.2017.11.021

    Article  CAS  Google Scholar 

  25. Starnovskaya ES, Kopchuk DS, Khasanov AF, Tanya OS, Santra S, Giri K, Rahman M, Kovalev IS, Zyryanov GV, Majeed A, Charushin VN (2019) Synthesis and photophysics of new unsymmetrically substituted 5,5′-diaryl-2,2′-bypiridine-based “push-pull” fluorophores. Dyes Pigm 162:324–330. https://doi.org/10.1016/j.dyepig.2018.10.040

    Article  CAS  Google Scholar 

  26. Kopchuk DS, Chepchugov NV, Starnovskaya ES, Khasanov AF, Krinochkin AP, Santra S, Zyryanov GV, Das P, Majee A, Rusinov VL, Charushin VN (2019) Synthesis and optical properties of new 2-(5-arylpyridine-2-yl)-6-(het)arylquinoline-based “push-pull” fluorophores. Dyes Pigm 167:151–156. https://doi.org/10.1016/j.dyepig.2019.04.029

    Article  CAS  Google Scholar 

  27. Chupakhin ON, Rusinov VL, Ulomsky EN, Kojevnikov DN, Neunhoeffer H (1997) Nucleophilic substitution of hydrogen in the reaction of 1,2,4-triazine-4-oxides with cyanides. Mendeleev Commun 7(2):66–67. https://doi.org/10.1070/MC1997v007n02ABEH000700

    Article  Google Scholar 

  28. Kozhevnikov VN, Kozhevnikov DN, Nikitina TV, Rusinov VL, Chupakhin ON, Zabel M, König B (2003) A versatile strategy for the synthesis of functionalized 2,2‘-bi- and 2,2‘:6‘,2‘‘-terpyridines via their 1,2,4-triazine analogues. J Org Chem 68(7):2882–2888. https://doi.org/10.1021/jo0267955

    Article  CAS  PubMed  Google Scholar 

  29. Charushin VN, Chupakhin ON (2019) Nucleophilic C—H functionalization of arenes: a contribution to green chemistry. Russ Chem Bull, Int Ed 68:453–471. https://doi.org/10.1007/s11172-019-2441-3

    Article  CAS  Google Scholar 

  30. Kozhevnikov DN, Kozhevnikov VN, Rusinov VL, Chupakhin ON (1997) A general method for the synthesis of 1,2,4-triazine 4-oxides. Mendeleev Commun 7(6):238. https://doi.org/10.1070/MC1997v007n06ABEH000875

    Article  Google Scholar 

  31. Saraswathi TV, Srinivasan VR (1977) Syntheses and spectral characteristics of 6-mono-, 3,6-di- and 3,5,6-trisubstituted-1,2,4-triazines. Tetrahedron 33(9):1043–1051. https://doi.org/10.1016/0040-4020(77)80223-8

    Article  CAS  Google Scholar 

  32. Kopchuk DS, Kovalev IS, Zyryanov GV, Khasanov AF, Medvedevskikh AS, Rusinov VL, Chupakhin ON (2013) Phenylglyoxal dihydrazones as unexpected products in the synthesis of 1,2,4-triazines by interaction of α-bromoacetophenones and arylhydrazides. Chem Heterocycl Compd 49(7):988–992. https://doi.org/10.1007/2Fs10593-013-1336-8

    Article  CAS  Google Scholar 

  33. Kozhevnikov VN, Ustinova MM, Slepukhin PA, Santoro A, Bruce DW, Kozhevnikov DN (2008) From 1,2,4-triazines towards substituted pyridines and their cyclometallated Pt complexes. Tetrahedron Lett 49(26):4096–4098. https://doi.org/10.1016/j.tetlet.2008.04.138

    Article  CAS  Google Scholar 

  34. Gers CF, Nordmann J, Kumru C, Frank W, Müller TJJ (2014) Solvatochromic fluorescent 2-substituted 3-ethynyl quinoxalines: four-component synthesis, photophysical properties, and electronic structure. J Org Chem 79(8):3296–3310. https://doi.org/10.1021/jo4025978

    Article  CAS  PubMed  Google Scholar 

  35. Wang K, Huang S, Zhang Y, Zhao S, Zhang H, Wang Y (2013) Multicolor fluorescence and electroluminescence of an ICT-type organic solid tuned by modulating the accepting nature of the central core. Chem Sci 4(8):3288–3293. https://doi.org/10.1039/C3SC51091C

    Article  CAS  Google Scholar 

  36. Nisic F, Colombo A, Dragonetti C, Fontani M, Marinotto D, Righetto S, Roberto D, Williams JAG (2015) Highly efficient acido-triggered reversible luminescent and nonlinear optical switch based on 5-π-delocalized-donor-1,3-di(2-pyridyl)benzenes. J Mater Chem C 3(28):7421–7427. https://doi.org/10.1039/C5TC01529D

    Article  CAS  Google Scholar 

  37. Li N, Lai S-L, Liu W, Wang P, You J, Lee C-S, Liu Z (2011) Synthesis and properties of n-type triphenylpyridine derivatives and applications in deep-blue organic light-emitting devices as electron-transporting layer. J Mater Chem 21(34):12977–12985. https://doi.org/10.1039/C1JM11898F

    Article  CAS  Google Scholar 

  38. Li Y-J, Sasabe H, Su S-J, Tanaka D, Takeda T, Pu Y-J, Kido J (2009) Phenanthroline derivatives for electron-transport layer in organic light-emitting devices. Chem Lett 38(7):712–713. https://doi.org/10.1246/cl.2009.712

    Article  CAS  Google Scholar 

  39. Tan S, Wu X, Zheng Y, Wang Y (2019) Synthesis and properties of novel N, C, N terdentate skeleton based on 1,3-di(pyridin-2-yl)benzene moiety-new tricks for old dogs. Chin Chem Lett 30(11):1951–1954. https://doi.org/10.1016/j.cclet.2019.08.003

    Article  CAS  Google Scholar 

  40. Yang X, Liu Y, Li J, Wang Q, Yang M, Li C (2018) A novel aggregation-induced-emission-active supramolecular organogel for the detection of volatile acid vapors. New J Chem 42(21):17524–17532. https://doi.org/10.1039/C8NJ02616E

    Article  CAS  Google Scholar 

  41. Kanimozhi R, Singh FV (2020) Metal-free synthesis and characterization of 1,3-Bis(heteroaryl)benzenes followed by the photophysical studies using ultraviolet–visible and fluorescence spectroscopy. J Mol Struct 1219:128633.

  42. Porrès L, Holland A, Pålsson L-O, Monkman AP, Kemp C, Beeby A (2006) Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J Fluoresc 16(2):267–272. https://doi.org/10.1007/s10895-005-0054-8

    Article  CAS  PubMed  Google Scholar 

  43. Kopchuk DS, Chepchugov NV, Taniya OS, Khasanov AF, Giri K, Kovalev IS, Santra S, Zyryanov GV, Majee A, Rusinov VL, Chupakhin ON (2016) 3-Cyano-2-azaanthracene-based “push-pull” fluorophores: A one-step preparation from 5-cyano-1,2,4-triazines and 2,3-dehydronaphthalene, generated in situ. Tetrahedron Lett 57(50):5639–5643. https://doi.org/10.1016/j.tetlet.2016.11.008

    Article  CAS  Google Scholar 

  44. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Boston

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation (Grant # 19-73-10144) and Grants Council of the President of the Russian Federation (no. NSh-2700.2020.3).

Funding

This work was supported by Russian Science Foundation (Grant # 19–73-10,144) and Grants Council of the President of the Russian Federation (no. NSh-2700.2020.3). No other sources of funding were involved.

Author information

Authors and Affiliations

Authors

Contributions

Ekaterina S. Starnovskaya: synthesis of the ligands, drafting the manuscript, final version approval; Dmitry S. Kopchuk: concept design, drafting the manuscript, final version approval; Yaroslav K. Shtaitz: synthesis of the ligands, drafting the manuscript, final version approval; Maria I. Savchuk: synthesis of the ligands and ptotophysical experiments, drafting the manuscript, final version approval; Igor L. Nikonov: ptotophysical experiments, drafting the manuscript, final version approval; Ilya N. Egorov: concept design, analysis of the literature data, rafting the manuscript, final version approval; Grigory V. Zyryanov: concept design, analysis of the obtained results, rafting the manuscript, final version approval; Vladimir L. Rusinov: concept design, analysis of the obtained results, drafting the manuscript, final version approval; Oleg N. Chupakhin: concept design, analysis of the obtained results, drafting the manuscript, final version approval.

Corresponding author

Correspondence to Igor L. Nikonov.

Ethics declarations

Ethical Approval

This manuscript was not be submitted to more than one journal for simultaneous consideration.

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 528 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starnovskaya, E.S., Kopchuk, D.S., Shtaitz, Y.K. et al. Asymmetrically Functionalized 1,3-Di(2-pyridyl)benzenes: Synthesis and Photophysical Studies. J Fluoresc 32, 125–133 (2022). https://doi.org/10.1007/s10895-021-02759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02759-4

Keywords

Navigation