Skip to main content
Log in

A Benzothiazole-Based Fluorescence Turn-on Sensor for Copper(II)

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new benzothiazole-based chemosensor BTN (1-((Z)-(((E)-3-methylbenzo[d]thiazol-2(3H)-ylidene)hydrazono)methyl)naphthalen-2-ol) was synthesized for the detection of Cu2+. BTN could detect Cu2+ with “off-on” fluorescent response from colorless to yellow irrespective of presence of other cations. Limit of detection for Cu2+ was determined to be 3.3 μM. Binding ratio of BTN and Cu2+ turned out to be a 1:1 with the analysis of Job plot and ESI-MS. Sensing feature of Cu2+ by BTN was explained with theoretical calculations, which might be owing to internal charge transfer and chelation-enhanced fluorescence processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao Y, Zhang XB, Han ZX, Qiao L, Li CY, Jian LX, Shen GL, Yu RQ (2009) Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal Chem 81:7022–7030

    Article  CAS  PubMed  Google Scholar 

  2. Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology. Copper. Biomed Pharmacother 57:386–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee DY, Singh N, Jang DO (2010) A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+. Tetrahedron Lett 51:1103–1106

    Article  CAS  Google Scholar 

  4. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  5. Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, Barnham KJ, Cappai R (2007) Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-βpeptide. Biochemistry 46:2881–2891

    Article  CAS  PubMed  Google Scholar 

  6. You GR, Lee JJ, Choi YW, Lee SY, Kim C (2016) Experimental and theoretical studies for sequential detection of copper(II) and cysteine by a colorimetric chemosensor. Tetrahedron 72:875–881

    Article  CAS  Google Scholar 

  7. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  PubMed  Google Scholar 

  8. Seo H, An M, Kim BY, Choi JH, Helal A, Kim HS (2017) Highly selective fluorescent probe for sequential recognition of copper(II) and iodide ions. Tetrahedron 73:4684–4691

    Article  CAS  Google Scholar 

  9. Hwang SM, Chae JB, Kim C (2018) A Phenanthroimidazole-based fluorescent turn-off Chemosensor for the selective detection of Cu2+ in aqueous media. Bull Kor Chem Soc 39:925–930

    Article  CAS  Google Scholar 

  10. Na YJ, Choi YW, Yun JY, Park KM, Chang PS, Kim C (2015) Dual-channel detection of Cu2+ and F with a simple Schiff-based colorimetric and fluorescent sensor. Spectrochim Acta - Part A Mol Biomol Spectrosc 136:1649–1657

    Article  CAS  Google Scholar 

  11. Lee HJ, Park SJ, Sin HJ, Na YJ, Kim C (2015) A selective colorimetric chemosensor with an electron-withdrawing group for multi-analytes CNand F. New J Chem 39:3900–3907

    Article  CAS  Google Scholar 

  12. Goswami S, Sen D, Das NK (2010) A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org Lett 12:856–859

    Article  CAS  PubMed  Google Scholar 

  13. Shivaprasad M, Govindaraju T (2011) Rhodamine based bright red colourimetric and turn-on fluorescence chemosensor for selective detection of Cu2+. Mater Technol 26:168–172

    Article  CAS  Google Scholar 

  14. Jiao Y, Zhou L, He H, Yin J, Gao Q, Wei J, Duan C, Peng X (2018) A novel rhodamine B-based “off-on” fluorescent sensor for selective recognition of copper (II) ions. Talanta 184:143–148

    Article  CAS  PubMed  Google Scholar 

  15. Rout K, Manna AK, Sahu M, Mondal J, Singh SK, Patra GK (2019) Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu2+ and Pb2+: application to living cell imaging and molecular logic gates. RSC Adv 9:25919–25931

    Article  CAS  Google Scholar 

  16. Li Y, Lan H, Yan X, Shi X, Liu X, Xiao S (2020) Retinal-based polyene fluorescent probe for selectively detection of Cu2+ in physiological saline and serum. Spectrochim Acta - Part A Mol Biomol Spectrosc 227:117565

    Article  CAS  Google Scholar 

  17. Ko KC, Wu JS, Kim HJ, Kwon PS, Kim JW, Bartsch RA, Lee JY, Kim JS (2011) Rationally designed fluorescence ‘turn-on’ sensor for Cu2+. Chem Commun 47:3165–3167

    Article  CAS  Google Scholar 

  18. Feng S, Gao Q, Gao X, Yin J, Jiao Y (2019) Fluorescent sensor for copper(II) ions based on coumarin derivative and its application in cell imaging. Inorg Chem Commun 102:51–56

    Article  CAS  Google Scholar 

  19. Lv XL, Wei Y, Luo SZ (2012) A “turn-on” fluorescent chemosensor based on peptidase for detecting copper. Anal Sci 28:749–752

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Zong Q (2015) A new turn-on fluorescent probe for the detection of copper ion in neat aqueous solution. Sensors Actuators B Chem 216:572–577

    Article  CAS  Google Scholar 

  21. Mal K, Naskar B, Chaudhuri T, Prodhan C, Goswami S, Chaudhuri K, Mukhopadhyay C (2020) Synthesis of quinoline functionalized fluorescent chemosensor for cu (II), DFT studies and its application in imaging in living HEK 293 cells. J Photochem Photobiol A Chem 389:112211

    Article  CAS  Google Scholar 

  22. Chen Z, Wang L, Zou G, Tang J, Cai X, Teng M, Chen L (2013) Highly selective fluorescence turn-on chemosensor based on naphthalimide derivatives for detection of copper(II) ions. Spectrochim Acta - Part A Mol Biomol Spectrosc 105:57–61

    Article  CAS  Google Scholar 

  23. Bhaskar R, Kumar GGV, Sivaraman G, Rajesh J, Sarveswari S (2019) Fluorescence “turn-on” sensor for highly selective recognition of Cu2+ ion and its application to living cell imaging. Inorg Chem Commun 104:110–118

    Article  CAS  Google Scholar 

  24. Xiao-Ni Q, Dang LR, Qu WJ et al (2020) Phenazine derivatives for optical sensing: a review. Royal Society of Chemistry

  25. Helal A, Or Rashid MH, Choi CH, Kim HS (2011) Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron 67:2794–2802

    Article  CAS  Google Scholar 

  26. Li Z, Chen QY, Wang PD, Wu Y (2013) Multifunctional BODIPY derivatives to image cancer cells and sense copper(ii) ions in living cells. RSC Adv 3:5524–5528

    Article  CAS  Google Scholar 

  27. Kumar A, Datta LP, Samanta S, et al (2021) Benzothiazole-phenothiazine conjugate based molecular probe for the differential detection of Glycated albumin. Isr J Chem 1–10

  28. Sik Na W, Raj P, Singh N, Jang DO (2019) Benzothiazole-based heterodipodal chemosensor for Cu2+ and CN ions in aqueous media. Tetrahedron Lett 60:151075

    Article  CAS  Google Scholar 

  29. Lee SA, Lee JJ, Shin JW, Min KS, Kim C (2015) A colorimetric chemosensor for the sequential detection of copper(II) and cysteine. Dyes Pigments 116:131–138

    Article  CAS  Google Scholar 

  30. Wu JS, Wang PF, Zhang XH, Wu SK (2006) Novel fluorescent sensor for detection of cu(II) in aqueous solution. Spectrochim Acta - Part A Mol Biomol Spectrosc 65:749–752

    Article  Google Scholar 

  31. Xiao N, Xie L, Zhi X, Fang CJ (2018) A naphthol-based highly selective fluorescence turn-on and reversible sensor for Al(III) ion. Inorg Chem Commun 89:13–17

    Article  CAS  Google Scholar 

  32. Shen Y, Zhang X, Zhang C, Zhang Y, Jin J, Li H (2018) A simple fluorescent probe for the fast sequential detection of copper and biothiols based on a benzothiazole derivative. Spectrochim Acta - Part A Mol Biomol Spectrosc 191:427–434

    Article  CAS  Google Scholar 

  33. Bin KD, Lee KH, Park KY et al (2018) Masking agent-controlled discriminative Hg2+ and Cu2+ sensing by quinonediimine dye formation of aniline-functionalized silica nanoparticles. Sensors Actuators B Chem 259:847–854

    Article  Google Scholar 

  34. Wang H, Zhao S, Xu Y, Li L, Li B, Pei M, Zhang G (2020) A new fluorescent probe based on imidazole[2,1-b]benzothiazole for sensitive and selective detection of Cu2+. J Mol Struct 1203:127384

    Article  CAS  Google Scholar 

  35. Nandre J, Patil S, Patil V, Yu F, Chen L, Sahoo S, Prior T, Redshaw C, Mahulikar P, Patil U (2014) A novel fluorescent “turn-on” chemosensor for nanomolar detection of Fe(III) from aqueous solution and its application in living cells imaging. Biosens Bioelectron 61:612–617

    Article  CAS  PubMed  Google Scholar 

  36. Chang C, Wang F, Wei T, Chen X (2017) Benzothiazole-based fluorescent sensor for Ratiometric detection of Zn(II) ions and secondary sensing PPi and its applications for biological imaging and PPase catalysis assays. Ind Eng Chem Res 56:8797–8805

    Article  CAS  Google Scholar 

  37. Jayabharathi J, Ramanathan P, Thanikachalam V, Arunpandiyan A (2014) Sensitive and selective PET-based π-expanded phenanthrimidazole luminophore for Zn2+ ion. J Fluoresc 24:827–834

    Article  CAS  PubMed  Google Scholar 

  38. Li Z, Liu C, Wang J, Wang S, Xiao L, Jing X (2019) A selective diaminomaleonitrile-based dual channel emissive probe for Al3+ and its application in living cell imaging. Spectrochim Acta - Part A Mol Biomol Spectrosc 212:349–355

    Article  CAS  Google Scholar 

  39. Dolai B, Bhaumik A, Pramanik N, Ghosh KS, Atta AK (2018) Naphthaldimine-based simple glucose derivative as a highly selective sensor for colorimetric detection of Cu2+ ion in aqueous media. J Mol Struct 1164:370–377

    Article  CAS  Google Scholar 

  40. Lim MH, Wong BA, Pitcock WH et al (2006) Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J Am Chem Soc 128:14364–14373

    Article  CAS  PubMed  Google Scholar 

  41. Dong HQ, Wei TB, Ma XQ, Yang QY, Zhang YF, Sun YJ, Shi BB, Yao H, Zhang YM, Lin Q (2020) 1,8-Naphthalimide-based fluorescent chemosensors: recent advances and perspectives. J Mater Chem C 8:13501–13529

    Article  CAS  Google Scholar 

  42. Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75:327–334

    Article  CAS  PubMed  Google Scholar 

  43. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Had (2009). G09 | Gaussian.com

  44. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  45. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  46. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  47. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  48. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  49. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  50. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  51. Klamt A, Moya C, Palomar J (2015) A comprehensive comparison of the IEFPCM and SS(V) PE continuum solvation methods with the COSMO approach. J Chem Theory Comput 11:4220–4225

    Article  CAS  PubMed  Google Scholar 

  52. Mukhopadhyay M, Banerjee D, Koll A, Mandal A, Filarowski A, Fitzmaurice D, Das R, Mukherjee S (2005) Excited state intermolecular proton transfer and caging of salicylidine-3,4,7-methyl amine in cyclodextrins. J Photochem Photobiol A Chem 175:94–99

    Article  CAS  Google Scholar 

  53. Goswami S, Aich K, Das S, Das Mukhopadhyay C, Sarkar D, Mondal TK (2015) A new visible-light-excitable ICT-CHEF-mediated fluorescence “turn-on” probe for the selective detection of Cd2+ in a mixed aqueous system with live-cell imaging. Dalton Trans 44:5763–5770

    Article  CAS  PubMed  Google Scholar 

  54. Slassi S, Aarjane M, El-Ghayoury A, Amine A (2019) A highly turn-on fluorescent CHEF-type chemosensor for selective detection of Cu2+ in aqueous media. Spectrochim Acta - Part A Mol Biomol Spectrosc 215:348–353

    Article  CAS  Google Scholar 

  55. Chang Y, Li B, Mei H, Yang L, Xu K, Pang X (2020) Indole-based colori/fluorimetric probe for selective detection of Cu2+ and application in living cell imaging. Spectrochim Acta - Part A Mol Biomol Spectrosc 226:117631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Research Foundation of Korea (NRF) (2018R1A2B6001686 and NRF-2020R1A6A1A03042742) is gratefully acknowledged.

Availability of Data and Material (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Gyeongjin Kim (60% contributions), Donghwan Choi (10% contributions), Cheal Kim (30% contributions).

Corresponding author

Correspondence to Cheal Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Choi, D. & Kim, C. A Benzothiazole-Based Fluorescence Turn-on Sensor for Copper(II). J Fluoresc 31, 1203–1209 (2021). https://doi.org/10.1007/s10895-021-02752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02752-x

Keywords

Navigation