Skip to main content
Log in

Synthesis of Magnetic Ions-Doped QDs Synthesized Via a Facial Aqueous Solution Method for Optical/MR Dual-Modality Imaging Applications

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This research reports the preparation and examination of Cadmium Telluride (CdTe) Quantum Dots and doping CdTe QDs with Europium (Eu), Gadolinium (Gd), and Manganese (Mn) prepared in aqueous solution using TGA as a capping agent. Magnetic QDs (MQDs) are important agents for fluorescence (FL) /magnetic resonance (MR) dual-modal imaging due to their excellent optical and magnetic properties. Herein, the chemical bonds, structural, fluorescence, and magnetized properties of CdTe QDs and effect of Mn, Eu, and Gd ions doping on their properties were examined by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTM), Energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL), Ultraviolet-visible spectroscopy (UV-Vis), and vibrating sample magnetometer measurements (VSM). Almost similar X-Ray patterns with the absence/presence of ions for all samples with cubic crystal structures were obtained which indicated that the introduction of ions into CdTe QDs could not alter the cubic primary structure of CdTe. Monodisperse size distributed with seemingly-spherical shapes, and also, the estimated mean diameters about 3 and less than 3 nm of QDs were obtained. The effect of X ions injection on the fluorescence and UV-Vis properties of the QDs were also investigated. Optical studies showed the decreases in bandgap as the heating time increases during synthesis while undergoing red-shift. The CdTe nanocrystals with high PL quantum yields were achieved in more than 6 h of heating. Also, investigations have shown the quenching of fluorescence by the existence of ions in the CdTe QDs. Then, all the ions doped QDs exhibited ferromagnetic behavior at room temperature by a vibrating sample magnetometer which confirmed the success of the presentation of ions into CdTe cubic crystal structure. They can have been employed as a suitable contrast agent successfully for biological applications such as FL/MR dual-modal imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Resch U, Weller H, Henglein A (1989 Jul) Photochemistry and radiation chemistry of colloidal semiconductors. 33. Chemical changes and fluorescence in CdTe and ZnTe. Langmuir. 5(4):1015–1020

    Article  CAS  Google Scholar 

  2. Geiregat P, Justo Y, Abe S, Flamee S, Hens Z (2013 Feb 26) Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling. ACS Nano 7(2):987–993

    Article  CAS  PubMed  Google Scholar 

  3. Alivisatos AP (1996 Aug 1) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100(31):13226–13239

    Article  CAS  Google Scholar 

  4. Kagan CR, Murray CB, Bawendi MG (1996 Sep 15) Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B 54(12):8633–8643

    Article  CAS  Google Scholar 

  5. Shao P, Zhang Q, Li Y, Wang H (2011) Aqueous synthesis of color-tunable and stable Mn 2+−doped ZnSe quantum dots. J Mater Chem 21(1):151–156

    Article  CAS  Google Scholar 

  6. Mansur HS (2010 Mar) Quantum dots and nanocomposites. Wiley Interdisciplinary Rev: Nanomed Nanobiotechnol 2(2):113–129

    CAS  Google Scholar 

  7. Singh N, Charan S, Sanjiv K, Huang SH, Hsiao YC, Kuo CW, Chien FC, Lee TC, Chen P (2012 Mar 21) Synthesis of tunable and multifunctional Ni-doped near-infrared QDs for cancer cell targeting and cellular sorting. Bioconjug Chem 23(3):421–430

    Article  CAS  PubMed  Google Scholar 

  8. Nirmal M, Brus L (1999 May 18) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32(5):407–414

    Article  CAS  Google Scholar 

  9. Arandian A, Bagheri Z, Ehtesabi H, Najafi Nobar S, Aminoroaya N, Samimi A, Latifi H (2019 Jul) Optical imaging approaches to monitor static and dynamic cell-on-Chip platforms: a tutorial review. Small. 15(28):1900737

    Article  Google Scholar 

  10. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012 Feb 6) A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed 51(6):1437–1442

    Article  CAS  Google Scholar 

  11. Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B (2011 Nov 8) Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem Mater 23(21):4857–4862

    Article  CAS  Google Scholar 

  12. Ridley BA, Nivi B, Jacobson JM (1999 Oct 22) All-inorganic field effect transistors fabricated by printing. Science. 286(5440):746–749

    Article  CAS  PubMed  Google Scholar 

  13. Greenham NC, Peng X, Alivisatos AP (1996 Dec 15) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54(24):17628–17637

    Article  CAS  Google Scholar 

  14. Huynh WU, Dittmer JJ, Alivisatos AP (2002 Mar 29) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    Article  CAS  PubMed  Google Scholar 

  15. Colvin VL, Schlamp MC, Alivisatos AP (1994 Aug) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature. 370(6488):354–357

    Article  CAS  Google Scholar 

  16. Tessler N, Medvedev V, Kazes M, Kan S, Banin U (2002 Feb 22) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science. 295(5559):1506–1508

    Article  PubMed  Google Scholar 

  17. Klostranec JM, Chan WC (2006 Aug 4) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18(15):1953–1964

    Article  CAS  Google Scholar 

  18. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998 Sep 25) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  CAS  PubMed  Google Scholar 

  19. Chan WC, Nie S (1998 Sep 25) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281(5385):2016–2018

    Article  CAS  PubMed  Google Scholar 

  20. Luo C, Li B, Peng H, Tang X, Wang Y, Travas-Sejdic J (2012 Apr 1) The effect of photo-irradiation on the optical properties of thiol-capped CdTe quantum dots. J Nanosci Nanotechnol 12(4):2998–3005

    Article  CAS  PubMed  Google Scholar 

  21. Peng H, Zhang L, Soeller C, Travas-Sejdic J (2007 Dec 1) Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. J Lumin 127(2):721–726

    Article  CAS  Google Scholar 

  22. Liu Y, Ai K, Yuan Q, Lu L (2011 Feb 1) Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. Biomaterials. 32(4):1185–1192

    Article  CAS  PubMed  Google Scholar 

  23. Cheon J, Lee JH (2008 Dec 16) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41(12):1630–1640

    Article  CAS  PubMed  Google Scholar 

  24. Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006 Mar 1) The use of luminescent quantum dots for optical sensing. TrAC Trends Anal Chem 25(3):207–218

    Article  Google Scholar 

  25. Chakravarthy KV, Davidson BA, Helinski JD, Ding H, Law WC, Yong KT, Prasad PN, Knight PR (2011 Feb) Doxorubicin conjugated quantum dots to target alveolar macrophages/inflammation. Nanomedicine. 7(1):88–96

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Liu S, Wang X, Li P, He Y (2013 Jan 1) A novel quantum dots-based OFF–ON fluorescent biosensor for highly selective and sensitive detection of double-strand DNA. Sensors Actuators B Chem 176:1147–1153

    Article  CAS  Google Scholar 

  27. Sharma A, Pandey CM, Sumana G, Soni U, Sapra S, Srivastava AK, Chatterjee T, Malhotra BD (2012 Oct 1) Chitosan encapsulated quantum dots platform for leukemia detection. Biosens Bioelectron 38(1):107–113

    Article  CAS  PubMed  Google Scholar 

  28. Samia AC, Chen X, Burda C (2003 Dec 24) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737

    Article  CAS  PubMed  Google Scholar 

  29. Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009 Jan) Antimicrobial efficacy of zinc oxide quantum dots against listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. J Food Sci 74(1):M46–M52

    Article  CAS  PubMed  Google Scholar 

  30. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005 Jun) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  CAS  PubMed  Google Scholar 

  31. Biju V, Anas A, Akita H, Shibu ES, Itoh T, Harashima H, Ishikawa M (2012 May 22) FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA. ACS Nano 6(5):3776–3788

    Article  CAS  PubMed  Google Scholar 

  32. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T (2003) Synthesis of water-soluble ZnS: Mn 2+ nanocrystals by using mercaptopropionic acid as stabilizer. J Mater Chem 13(7):1853–1857

    Article  CAS  Google Scholar 

  33. Nosenko V, Vorona I, Grachev V, Ishchenko S, Baran N, Becherikov Y, Zhuk A, Polishchuk Y, Kladko V, Selishchev A (2016 Dec 1) The crystal structure of micro-and nanopowders of ZnS studied by EPR of Mn 2+ and XRD. Nanoscale Res Lett 11(1):517

    Article  PubMed  PubMed Central  Google Scholar 

  34. More D, Rajesh C, Lad AD, Kumar GR, Mahamuni S (2010 May 15) Two photon absorption in Mn2+−doped ZnSe quantum dots. Opt Commun 283(10):2150–2154

    Article  CAS  Google Scholar 

  35. Beaulac R, Archer PI, van Rijssel J, Meijerink A, Gamelin DR (2008 Sep 10) Exciton storage by Mn2+ in colloidal Mn2+−doped CdSe quantum dots. Nano Lett 8(9):2949–2953

    Article  CAS  PubMed  Google Scholar 

  36. Sun D, Zhong H, Yao X, Chang Y, Zhao Y, Jiang Y (2014 Jun 15) A bright blue-shifted emission from Mn2+−doped CdS quantum dots. Mater Lett 125:132–135

    Article  CAS  Google Scholar 

  37. Li W, Sheng P, Feng H, Yin X, Zhu X, Yang X, Cai Q (2014 Aug 13) Stable core/shell CdTe/Mn-CdS quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode and their photoelectrochemical properties. ACS Appl Mater Interfaces 6(15):12353–12362

    Article  CAS  PubMed  Google Scholar 

  38. Georgobiani AN, Kotljarevsky MB, Kidalov VV, Rogozin IV (2000 Jun 2) Aminov UA p-Type II–VI compounds doped by rare-earth elements. J crystal growth 214:516–519

    Article  Google Scholar 

  39. Loiko NN, Konnov VM, Sadofyev YG, Makhov EI, Trushin AS, Gippius AA (2002) Photoluminescence of Yb doped ZnTe. physica status solidi (b). 229(1):317–21

  40. Abiko Y, Nakayama N, Akimoto K, Yao T (2002) Difference in luminescence properties between Sm doped ZnS and Eu doped ZnS. physica status solidi (b). 229(1):339–42

  41. Savchuk AI, Paranchych SY, Frasunyak VM, Fediv VI, Tanasyuk YV, Kandyba YO, Nikitin PI (2003 Dec 15) Optical and magnetooptical study of CdTe crystals doped with rare earth ions. Mater Sci Eng B 105(1–3):161–164

    Article  Google Scholar 

  42. Wang S, Jarrett BR, Kauzlarich SM, Louie AY (2007 Apr 4) Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc 129(13):3848–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li IF, Yeh CS (2010) Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications. J Mater Chem 20(11):2079–2081

    Article  CAS  Google Scholar 

  44. Jing L, Ding K, Kalytchuk S, Wang Y, Qiao R, Kershaw SV, Rogach AL, Gao M (2013 Sep 12) Aqueous manganese-doped core/shell CdTe/ZnS quantum dots with strong fluorescence and high relaxivity. J Phys Chem C 117(36):18752–18761

    Article  CAS  Google Scholar 

  45. Zhang F, Sun TT, Zhang Y, Li Q, Chai C, Lu L, Shen W, Yang J, He XW, Zhang YK, Li WY (2014) Facile synthesis of functional gadolinium-doped CdTe quantum dots for tumor-targeted fluorescence and magnetic resonance dual-modality imaging. J Mater Chem B 2(41):7201–7209

    Article  CAS  PubMed  Google Scholar 

  46. Tu C, Ma X, Pantazis P, Kauzlarich SM, Louie AY (2010 Feb 17) Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J Am Chem Soc 132(6):2016–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Singh MP, Atkins TM, Muthuswamy E, Kamali S, Tu C, Louie AY, Kauzlarich SM (2012 Jun 26) Development of iron-doped silicon nanoparticles as bimodal imaging agents. ACS Nano 6(6):5596–5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geraldes CF, Laurent S (2009 Jan) Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast med mol imag 4(1):1–23

    Article  CAS  Google Scholar 

  49. Zhao D, Fang Y, Wang H, He Z (2011) Synthesis and characterization of high-quality water-soluble CdTe: Zn 2+ quantum dots capped by N-acetyl-l-cysteine via hydrothermal method. J Mater Chem 21(35):13365–13370

    Article  CAS  Google Scholar 

  50. Cheng J, Li D, Cheng T, Ren B, Wang G, Li J (2014 Mar 15) Aqueous synthesis of high-fluorescence CdZnTe alloyed quantum dots. J Alloys Compd 589:539–544

    Article  CAS  Google Scholar 

  51. Mansoorianfar M, Rahighi R, Hojjati-Najafabadi A, Mei C, Li D (2020) Amorphous/crystalline phase control of Nanotubular TiO2 membranes via pressure-engineered anodizing. Materials & Design, 109314

  52. Chami AC, Daudin B, Fontenille J, Gros P, Ligeon E (1993 Jul 1) Evidence of an interfacial layer formation during rare-earth deposition onto CdTe: the case of Sm. J Appl Phys 74(1):237–243

    Article  CAS  Google Scholar 

  53. Chen C, Wang X, Liu A, Wu H (2000 May 1) Faraday-rotation spectra of the diluted magnetic semiconductor cd 1− x Gd x Te. J Appl Phys 87(9):6463–6465

    Article  CAS  Google Scholar 

  54. Wruck D, Boyn R, Parthier L, Henneberger F (1998 Feb 2) Incorporation of rare earths into II–VI compounds during MBE growth: optical and EXAFS studies of Sm-doped ZnTe. J Cryst Growth 184:119–123

    Google Scholar 

  55. Zare H, Marandi M, Fardindoost S, Sharma VK, Yeltik A, Akhavan O, Demir HV, Taghavinia N (2015 Jul 1) High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Res 8(7):2317–2328

    Article  CAS  Google Scholar 

  56. Pourghobadi Z, Mirahmadpour P, Zare H (2018 Oct 1) Fluorescent biosensor for the selective determination of dopamine by TGA-capped CdTe quantum dots in human plasma samples. Opt Mater 84:757–762

    Article  CAS  Google Scholar 

  57. Zhang BH, Wu FY, Wu YM, Zhan XS (2010 Jan 1) Fluorescent method for the determination of sulfide anion with ZnS: Mn quantum dots. J Fluoresc 20(1):243–250

    Article  CAS  PubMed  Google Scholar 

  58. Jiang C, Shen Z, Luo C, Lin H, Huang R, Wang Y, Peng H (2016 Aug 1) One-pot aqueous synthesis of gadolinium doped CdTe quantum dots with dual imaging modalities. Talanta. 155:14–20

    Article  CAS  PubMed  Google Scholar 

  59. Marandi M, Emrani B, Zare H (2017 Jul 1) Synthesis of highly luminescent CdTe/CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Opt Mater 69:358–366

    Article  CAS  Google Scholar 

  60. Wang Y, Hou Y, Tang A, Feng B, Li Y, Liu J, Teng F (2007 Oct 1) Synthesis and optical properties of composition-tunable and water-soluble ZnxCd1− xTe alloyed nanocrystals. J Cryst Growth 308(1):19–25

    Article  CAS  Google Scholar 

  61. Henglein A (1989 Dec 1) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873

    Article  CAS  Google Scholar 

  62. Chu J, Sher A (2008) Physics and properties of narrow gap semiconductors. Springer, New York

    Google Scholar 

  63. Kumar S, Sahare PD (2014 Mar 1) Gd3+ incorporated ZnO nanoparticles: a versatile material. Mater Res Bull 51:217–223

    Article  CAS  Google Scholar 

  64. Dakhel AA, El-Hilo M (2010 Jun 15) Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation. J Appl Phys 107(12):123905

    Article  Google Scholar 

  65. Wang KY, Sawicki M, Edmonds KW, Campion RP, Rushforth AW, Freeman AA, Foxon CT, Gallagher BL, Dietl T (2006 Jan 9) Control of coercivities in (Ga, Mn) as thin films by small concentrations of MnAs nanoclusters. Appl Phys Lett 88(2):022510

    Article  Google Scholar 

  66. Paul S, Choudhury B, Choudhury A (2014 Jul 15) Magnetic property study of Gd doped TiO2 nanoparticles. J Alloys Compd 601:201–206

    Article  CAS  Google Scholar 

Download references

Availability of Data and Material (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Shima Gharghargani(25% contributions), Hakimeh Zare (25% contributions), Zahra Shahedi (25% contributions), Yousef Fazaeli (15% contributions), Reza Rahighi (15% contributions).

Corresponding author

Correspondence to Hakimeh Zare.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharghani, S., Zare, H., Shahedi, Z. et al. Synthesis of Magnetic Ions-Doped QDs Synthesized Via a Facial Aqueous Solution Method for Optical/MR Dual-Modality Imaging Applications. J Fluoresc 31, 897–906 (2021). https://doi.org/10.1007/s10895-021-02720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02720-5

Keywords

Navigation