Skip to main content
Log in

A Bis(Salamo)-Based Fluorogenic Sensor for Highly Selective and Sequential Recognition of Cu2+ and B4O72− Ions in Semi-Aqueous Medium

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new type of multifunctional bis(salamo)-based fluorogenic sensor H2BS was designed and synthesized. Under the action of VDMF: VH2O = 9: 1, the fluorogenic sensor can identify Cu2+ and B4O72−, in which N and O atoms can serve as binding sites for Cu2+ and B4O72−, the stoichiometry of the binding of the fluorogenic sensor H2BS and Cu2+ has been confirmed by titration experiment, working curve, ESI-MS analysis and DFT calculation. The pH response experiment also confirmed that the fluorogenic sensor can recognize Cu2+ and B4O72− in the pH range applicable to the physiological environment. The minimum detection limit of H2BS for Cu2+ and B4O72− recognition reaches 1.12 × 10−7 and 5.56 × 10−8 M, and the fluorogenic sensor H2BS has been successfully applied to Cu2+ detection in actual water samples, and the test strip for detecting Cu2+ and B4O72− was obtained. Meanwhile, the success of the test strip experiment made the fluorogenic sensor H2BS to recognize Cu2+ and B4O72− widely used in daily life.

Graphical abstract

A new type of salamo-based multifunctional fluorogenic sensor H2BS was designed and synthesized to identify Cu2+ and B4O72− in aqueous solvent systems. Added Cu2+ to H2BS can cause fluorescence quenching. Further experiments showed that H2BS and Cu2+ form a stable 1:2 complex, while B4O72− can also cause fluorescence quenching of H2BS, which is the occurrence of the PET effect. Meanwhile, H2BS can be used for quantitative detection in the environment and rapid identification in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available in the supplementary material of this article.

References

  1. Wang L, Wei ZL, Chen ZZ, Liu C, Dong WK, Ding YJ (2020) A chemical probe capable for fluorescent and colorimetric detection to Cu2+ and CN based on coordination and nucleophilic addition mechanism. Microchem J 155:104801. https://doi.org/10.1016/j.microc.2020.104801

    Article  CAS  Google Scholar 

  2. Pan YQ, Xu X, Zhang Y, Zhang Y, Dong WK (2020) A highly sensitive and selective bis(Salamo)-type fluorescent chemosensor for identification of Cu2+ and the continuous recognition of S2−, arginine and lysine, Spectrochim Acta A 229: 117927. https://doi.org/10.1016/j.saa.2019.117927

  3. Wei ZL, Wang L, Wang JF, Guo WT, Zhang Y, Dong WK (2020) Two highly sensitive and efficient Salamo-like copper (II) complex probes for recognition of CN. Spectrochim Acta A 228:117775. https://doi.org/10.1016/j.saa.2019.117775

    Article  CAS  Google Scholar 

  4. Pan YQ, Zhang Y, Yu M, Zhang Y, Wang L (2020) Newly synthesized homomultinuclear co (II) and cu (II) bissalamo-like complexes: structural characterizations, Hirshfeld analyses, fluorescence and antibacterial properties. Appl Organomet Chem 34:e5441. https://doi.org/10.1002/aoc.5441

    Article  CAS  Google Scholar 

  5. Liu C, Wei ZL, Mu HR, Dong WK, Ding YJ (2020) A novel unsymmetric bis(Salamo)-based chemosensor for detecting Cu2+ and continuous recognition of amino acids. J. Photochem. Photobio. A 397:112569. https://doi.org/10.1016/j.jphotochem.2020.112569

    Article  CAS  Google Scholar 

  6. Wang L, Wei ZL, Liu C, Dong WK, Ru JX (2020) Synthesis and characterization for a highly selective bis(Salamo)-based chemical sensor and imaging in living cell. Spectrochim Acta A 239:118496. https://doi.org/10.1016/j.saa.2020.118496

    Article  CAS  Google Scholar 

  7. An XX, Chen ZZ, Mu HR, Zhao L (2020) Investigating into crystal structures and supramolecular architectures of four newly synthesized hetero-octanuclear [CuII4-LnIII4] (Ln = Sm, Eu, Tb and Dy) complexes produced by a hexadentate bisoxime chelate ligand. Inorg Chim Acta 511:119823. https://doi.org/10.1016/j.ica.2020.119823

    Article  CAS  Google Scholar 

  8. Li XY, Kang QP, Liu C, Zhang Y, Dong WK (2019) Structurally characterized homo-trinuclear ZnII and hetero-pentanuclear [ZnII4LnIII] complexes constructed from an octadentate bis (Salamo)-based ligand: Hirshfeld surfaces, fluorescence and catalytic properties. New J Chem 43:4605–4619. https://doi.org/10.1039/c9nj00014c

    Article  CAS  Google Scholar 

  9. Mu HR, Yu M, Wang L, Zhang Y, Ding YJ (2020) Catching S2− and Cu2+ by a highly sensitive and efficient Salamo-like fluorescence-ultraviolet dual channel chemosensor. Phosphorus Sulfur Silicon Relat Elem 195:730–739. https://doi.org/10.1080/10426507.2020.1756807

    Article  CAS  Google Scholar 

  10. Zhang Y, Yu M, Pan YQ, Zhang Y, Xu L, Dong XY (2020) Three rare heteromultinuclear 3d-4f Salamo-like complexes constructed from auxiliary ligand 4,4′-bipy: syntheses, structural characterizations, fluorescence and antimicobial properties. Appl Organomet Chem 34:e5442. https://doi.org/10.1002/aoc.5442

    Article  CAS  Google Scholar 

  11. Kang QP, Li XY, Wang L, Zhang Y, Dong WK (2019) Containing-PMBP N2O2-donors transition metal (II) complexes: synthesis, crystal structure, Hirshfeld surface analyses and fluorescence properties. Appl Organomet Chem 33:e5013. https://doi.org/10.1002/aoc.5013

    Article  CAS  Google Scholar 

  12. Zhang Y, Liu LZ, Peng YD, Li N, Dong WK (2019) Structurally characterized trinuclear nickel (II) and copper (II) Salamo-type complexes: syntheses, Hirshfeld analyses and fluorescent properties. Transition Met Chem 44:627–639. https://doi.org/10.1007/s11243-019-00325-3

    Article  CAS  Google Scholar 

  13. Kang QP, Li XY, Wei ZL, Zhang Y, Dong WK (2019) Symmetric containing-PMBP N2O2-donors nickel (II) complexes: syntheses, structures, Hirshfeld analyses and fluorescent properties. Polyhedron 165:38–50. https://doi.org/10.1016/j.poly.2019.03.008

    Article  CAS  Google Scholar 

  14. Zhao Q, An XX, Liu LZ, Dong WK (2019) Syntheses, luminescences and Hirshfeld surfaces analyses of structurally characterized homo-trinuclear ZnII and hetero-pentanuclear ZnII-LnIII (Ln = Eu, Nd) bis(Salamo)-like complexes. Inorg Chim Acta 490:6–15. https://doi.org/10.1016/j.ica.2019.02.040

    Article  CAS  Google Scholar 

  15. Yu M, Mu HR, Liu LZ, Li N, Bai Y, Dong XY (2019) Syntheses, structure and Hirshfeld analyese of trinuclear Ni (II) Salamo-type complexes. Chin J Inorg Chem 35:1109–1120. https://doi.org/10.11862/CJIC.2019.128

    Article  CAS  Google Scholar 

  16. Sun YX, Pan YQ, Xu X, Zhang Y (2019) Unprecedented dinuclear CuII N,O-donor complex: Synthesis, structural characterization, fluorescence property, and Hirshfeld analysis. Crystals 9:607. https://doi.org/10.3390/cryst9120607

    Article  CAS  Google Scholar 

  17. Liu LZ, Wang L, Yu M, Zhao Q, Zhang Y, Sun YX, Dong WK (2019) A highly sensitive and selective fluorescent "off-on-off" relay chemosensor based on a new bis(Salamo)-type tetraoxime for detecting Zn2+ and CN. Spectrochim Acta A 222:117209. https://doi.org/10.1016/j.saa.2019.117209

    Article  CAS  Google Scholar 

  18. Li RY, Wei ZL, Wang L, Zhang Y, Ru JX (2021) A new Salamo-based fluorescence probe to visually detect aluminum (III) ion and bio-imaging in zebrafish. Microchem J 162:105720. https://doi.org/10.1016/j.microc.2020.105720

    Article  CAS  Google Scholar 

  19. An XX, Zhao Q, Mu HR, Dong WK (2019) A new half-Salamo-based homo-trinuclear nickel (II) complex: crystal structure, Hirshfeld surface analysis, and fluorescence properties. Crystals 9:101. https://doi.org/10.3390/cryst9020101

    Article  CAS  Google Scholar 

  20. Liu C, An XX, Cui YF, Xie KF, Dong WK (2020) Novel structurally characterized hetero-bimetallic [Zn (II)2M(II)] (M = Ca and Sr) bis(Salamo)-type complexes: DFT calculation, Hirshfeld analyses, antimicrobial and fluorescent properties. Appl Organomet Chem 34:e5272. https://doi.org/10.1002/aoc.5272

    Article  CAS  Google Scholar 

  21. Li YJ, Guo SZ, Feng T, Xie KF, Dong WK (2021) An investigation into three-dimensional octahedral multi-nuclear Ni (II)-based complexes supported by a more flexible Salamo-type ligand. J Mol Struct 1228:129796. https://doi.org/10.1016/j.molstruc.2020.129796

    Article  CAS  Google Scholar 

  22. Zhang LW, Zhang Y, Cui YF, Yu M, Dong WK (2020) Heterobimetallic [NiIILnIII] (Ln = Sm and Tb) N2O4-donor coordination polymers: syntheses, crystal structures and fluorescence properties. Inorg Chim Acta 506:119534. https://doi.org/10.1016/j.ica.2020.119534

    Article  CAS  Google Scholar 

  23. Yu M, Zhang Y, Pan YQ, Wang L (2020) Two novel copper (II) Salamo-based complexes: syntheses, X-ray crystal structures, spectroscopic properties and Hirshfeld surfaces analyses. Inorg Chim Acta 509:119701. https://doi.org/10.1016/j.ica.2020.119701

    Article  CAS  Google Scholar 

  24. Wang L, Pan YQ, Wang JF, Zhang Y, Ding YJ (2020) A highly selective and sensitive half-Salamo-based fluorescent chemosensor for sequential detection of Pb (II) ion and Cys. J Photochem Photobio A 400:112719. https://doi.org/10.1016/j.jphotochem.2020.112719

    Article  CAS  Google Scholar 

  25. Bian RN, Wang JF, Li YJ, Zhang Y, Dong WK (2020) Fluorescent chemical sensor based on double N2O2 cavities for continuous recognition of Cu2+ and Al3+. J Photochem Photobiol A 400:112829. https://doi.org/10.1016/j.jphotochem.2020.112829

    Article  CAS  Google Scholar 

  26. Xu X, Bian RN, Guo SZ, Dong WK, Ding YJ (2020) A new asymmetric Salamo-based chemical sensor for dual channel detection of Cu2+ and B4O72−. Inorg Chim Acta 513:119945. https://doi.org/10.1016/j.ica.2020.119945

    Article  CAS  Google Scholar 

  27. Peng YD, Zhang Y, Jiang YL, Ren ZL, Wang F, Wang L (2020) An unsymmetric Salamo-like chemosensor for fuorescent recognition of Zn2+. J Fluores 30:1049–1061. https://doi.org/10.1007/s10895-020-02579-y

    Article  CAS  Google Scholar 

  28. Zhang Y, Li YJ, Guo SZ, Fu T, Zhao L (2020) A series of heterobimetallic Ni (II)–Ln (III) (Ln = La, Ce, Pr and Nd) coordination polymers derived from 3-EtOsalamo and dicarboxylates: syntheses, crystal structures and fluorescence properties. Transit Met Chem 45:485–492. https://doi.org/10.1007/s11243-020-00400-0

    Article  CAS  Google Scholar 

  29. Zhang SZ, Chang J, Zhang HJ, Sun YX, Wu Y, Wang YB (2020) Synthesis, crystal structure and spectral properties of binuclear Ni (II) and cubane-like Cu43-O)4 cored tetranuclear Cu (II) complexes based on coumarin Schiff base. Chin J Inorg Chem 36:503–514. https://doi.org/10.11862/CJIC.2020.056

    Article  CAS  Google Scholar 

  30. Chang J, Zhang SZ, Wu Y, Zhang HJ, Sun YX (2020) Three supramolecular trinuclear nickel (II) complexes based on Salamo-type chelating ligand: syntheses, crystal structures, solvent effect, Hirshfeld surface analysis and DFT calculation. Transit Met Chem 45:279–293. https://doi.org/10.1007/s11243-020-00379-8

    Article  CAS  Google Scholar 

  31. Xu X, Wang JF, Bian RN, Zhao L (2020) Synthesis, structure, Hirshfeld analysis and fluorescence properties of a new asymmetric Salamo-based ligand and its Cu (II) complex involving oxime oxygen coordination. J Coord Chem 73:2209–2223. https://doi.org/10.1080/00958972.2020.1822524

    Article  CAS  Google Scholar 

  32. Freire C, Nunes M, Pereira C, Fernandes DM, Peixoto AF, Rocha M (2019) Metallo (salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coord Chem Rev 394:104–134. https://doi.org/10.1016/j.ccr.2019.05.014

    Article  CAS  Google Scholar 

  33. Zhang Y, Li L, Wang J, Jia L, Yang R, Guo X (2020) A 4,5-quinolimide-based fluorescent sensor for sequential detection of Cu2+ and cysteine in water and living cells with application in a memorized device. Spectrochim Acta A 230:118030. https://doi.org/10.1016/j.saa.2020.118030

    Article  CAS  Google Scholar 

  34. Wei ZL, Wang L, Guo SZ, Zhang Y, Dong WK (2019) A high-efficiency Salamo-based copper (II) complex double-channel fluorescent probe. RSC Adv 9:41298–41304. https://doi.org/10.1039/c9ra09017g

    Article  CAS  Google Scholar 

  35. Ryu KY, Lee JJ, Kim JA, Park DY, Kim C (2016) Colorimetric chemosensor for multiple targets, Cu2+, CN and S2−. RSC Adv 6:16586–16597. https://doi.org/10.1039/c5ra27553a

    Article  CAS  Google Scholar 

  36. Timm MJ, Leung L, Anggara K, Lim T, Hu Z, Latini S, Rubio A, Polanyi JC (2020) Contrasting efficiency of electron-induced reaction at cu(110) in aliphatic and aromatic bromides. J Am Chem Soc 142:9453–9459. https://doi.org/10.1021/jacs.0c02851

    Article  CAS  PubMed  Google Scholar 

  37. Meng XJ, Cao DL, Hu ZY, Han XH, Li ZC, Liang D, Ma WB (2018) A coumarin based highly selective fluorescent chemosensor for sequential recognition of Cu2+ and Ppi. Tetrahedron Lett 59:4299–4304. https://doi.org/10.1016/j.tetlet.2018.10.048

    Article  CAS  Google Scholar 

  38. Muwal PK, Nayal A, Jaiswal MK, Pandey PS (2018) A dipyrromethane based receptor as a dual colorimetric sensor for F and Cu2+ ions. Tetrahedron Lett 59:29–32. https://doi.org/10.1016/j.tetlet.2017.11.042

    Article  CAS  Google Scholar 

  39. Sonkar AK, Rai A, Tripathi K, Yadav R, Shukla M, Chauhan BS, Srikrishna S, Mishra L (2020) A dual optical probe with larger stokes shift for simultaneous detection of Cu2+ and Zn2+ ions and aggregation induced enhanced emission empowering selective detection of Cu2+ ions. Sensors Actuators B Chem 327:129011. https://doi.org/10.1016/j.snb.2020.129011

    Article  CAS  Google Scholar 

  40. Kenaan A, Brunel F, Raimundo JM, Charrier AM (2020) Femtomolar detection of Cu2+ ions in solution using super-nernstian FET-sensor with a lipid monolayer as top-gate dielectric. Sensors Actuators B Chem 316:128147. https://doi.org/10.1016/j.snb.2020.128147

    Article  CAS  Google Scholar 

  41. Schneider JD, Smith BA, Williams GA, Powell DR, Perez F, Rowe GT, Yang L (2020) Synthesis and characterization of cu (II) and mixed-valence cu(I) cu (II) clusters supported by pyridylamide ligands. Inorg Chem 59:5433–5446. https://doi.org/10.1021/acs.inorgchem.0c00008

    Article  CAS  PubMed  Google Scholar 

  42. Kalarani R, Sankarganesh M, Kumar GGV, Kalanithi M (2020) Synthesis, spectral, DFT calculation, sensor, antimicrobial and DNA binding studies of Co (II), Cu (II) and Zn (II) metal complexes with 2-amino benzimidazole Schiff base. J Mol Struct 1206:127725. https://doi.org/10.1016/j.molstruc.2020.127725

    Article  CAS  Google Scholar 

  43. Kumar A, Kumar S, Chae PS (2020) A novel anthrapyridone diamine-based probe for selective and distinctive Cu2+ and Hg2+ sensing in aqueous solution; utility as molecular logic gates. Dyes Pigments 181:108522. https://doi.org/10.1016/j.dyepig.2020.108522

    Article  CAS  Google Scholar 

  44. Fang H, Huang PC, Wu FY (2018) A novel jointly colorimetric and fluorescent sensor for Cu2+ recognition and its complex for sensing S2− by a Cu2+ displacement approach in aqueous media. Spectrochim Acta A 204:568–575. https://doi.org/10.1016/j.saa.2018.06.068

    Article  CAS  Google Scholar 

  45. Wang KG, Yin TT, Zhou HF, Liu XB, Deng JJ, Li SX, Lu CM, Chen XL (2019) Bismuth borate composite microwave ceramics synthesised by different ratios of H3BO3 for ULTCC technology. J Eur Ceram Soc 40:381–385. https://doi.org/10.1016/j.jeurceramsoc.2019.09.035

    Article  CAS  Google Scholar 

  46. Saudi HA, Abd-Allah WM, Shaaban KS (2020) Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J Mater Sci Mater Electron 31:6963–6976. https://doi.org/10.1007/s10854-020-03261-6

    Article  CAS  Google Scholar 

  47. Vera A, Moreno JL, Garcia C, Morais D, Bastida F (2019) Boron in soil: the impacts on the biomass, composition and activity of the soil microbial community. Sci Total Environ 68:564–573. https://doi.org/10.1016/j.scitotenv.2019.05.375

    Article  CAS  Google Scholar 

  48. Cicek B, Karadagli E, Duman F (2018) Use of boron mining waste as an alternative to boric acid (H3BO3) in opaque frit production. Ceram Int 44:14264–14280. https://doi.org/10.1016/j.ceramint.2018.05.031

    Article  CAS  Google Scholar 

  49. Chen M, Dollar O, Shafer-Peltier K, Randtke S, Waseem S, Peltier E (2020) Boron removal by electrocoagulation: removal mechanism, adsorption models and factors influencing removal. Water Res 170:115362. https://doi.org/10.1016/j.watres.2019.115362

    Article  CAS  PubMed  Google Scholar 

  50. Kuz’micheva G, Svetogorov R, Kaurova I (2020) On symmetry of rare-earth scandium borate RESc3(BO3)4 (RE = Ce, Nd) laser crystals. J Solid State Chem 288:121393. https://doi.org/10.1016/j.jssc.2020.121393

    Article  CAS  Google Scholar 

  51. Risplendi F, Raffone F, Lin LC, Grossman JC, Cicero G (2020) Fundamental insights on hydration environment of boric acid and its role in separation from saline water. J Phys Chem C 124:1438–1445. https://doi.org/10.1021/acs.jpcc.9b10065

    Article  CAS  Google Scholar 

  52. Kuo YC, Liu HK, Wang SL, Lii KH (2020) High-temperature, high-pressure hydrothermal synthesis, crystal structure, and infrared and NMR spectroscopy of a barium lead borate with a 2D layer structure: [Ba3Pb(H2O)][B11O19(OH)3]. Dalton Trans 49:6220–6226. https://doi.org/10.1039/d0dt01172j

    Article  CAS  PubMed  Google Scholar 

  53. Liu LZ, Yu M, Li XY, Kang QP, Dong WK (2019) Syntheses, structures, Hirshfeld analyses and fluorescent properties of two Ni (II) and Zn (II) complexes constructed from a bis(Salamo)-like ligand. Chin. J. Inorg. Chem. 35:1283–1294. https://doi.org/10.11862/CJIC.2019.158

  54. Li J, Liu Z, Wang Y, Wang R (2020) Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode. J Alloys Compd 834:155150. https://doi.org/10.1016/j.jallcom.2020.155150

    Article  CAS  Google Scholar 

  55. Yan L, Du C, Riaz M, Jiang C (2019) Boron mitigates citrus root injuries by regulating intracellular pH and reactive oxygen species to resist H+-toxicity. Environ Pollut 255:113254. https://doi.org/10.1016/j.envpol.2019.113254

    Article  CAS  PubMed  Google Scholar 

  56. Zhi SC, Wang YL, Sun L, Cheng JW, Yang GY (2018) Linking 1D transition-metal coordination polymers and different inorganic boron oxides to construct a series of 3D inorganic–organic hybrid borates. Inorg Chem 57:1350–1355. https://doi.org/10.1021/acs.inorgchem.7b02765

    Article  CAS  PubMed  Google Scholar 

  57. Zhou X, Huang J, Cai G, Zhou H, Huang Y, Su X (2020) Large optical polarizability causing positive effects on the birefringence of planar-triangular BO3 groups in ternary borates. Dalton Trans 49:3284–3292. https://doi.org/10.1039/d0dt00155d

    Article  CAS  PubMed  Google Scholar 

  58. Ding XB, Gu YJ, Li Q, Kim BH, Wang QF, Huang JL (2020) Room temperature densified H3BO3 microwave dielectric ceramics with ultra-low permittivity and high quality factor for dielectric substrate applications. Ceram Int 46:13225–13232. https://doi.org/10.1016/j.ceramint.2020.02.098

    Article  CAS  Google Scholar 

  59. Yves KG, Chen T, Aladejana JT, Wu Z, Xie Y (2020) Preparation, test, and analysis of a novel aluminosilicate-based antimildew agent applied on the microporous structure of wood. ACS Omega 5:8784–8793. https://doi.org/10.1021/acsomega.0c00357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tursunbadalov S, Soliev L (2018) Investigation of phase equilibria in quinary water–salt systems. J Chem Eng Data 63:598–612. https://doi.org/10.1021/acs.jced.7b00799

    Article  CAS  Google Scholar 

  61. Wang L, Wei ZL, Yu M, Pan YQ, Zhang Y, Dong WK (2019) Multihalogen-substituted Salamo-type Mn (II) complexes: syntheses, crystal structures, Hirshfeld analyses and fluorescence properties. Chin J Inorg Chem 35:1791. https://doi.org/10.11862/CJIC.2019.212

    Article  CAS  Google Scholar 

  62. Xu X, Li YJ, Feng T, Dong WK, Ding YJ (2021) Highly efficient detection of Cu2+ and B4O72− based on a recyclable asymmetric Salamo-based probe in aqueous medium. Luminescence 36:169–179. https://doi.org/10.1002/bio.3932

    Article  PubMed  Google Scholar 

  63. Raghunathan R, Kathiravan S (2009) A facile one-pot three-component synthesis of macrocyclic imidazolidines by [3+2] cycloaddition reaction of azomethine ylides. Synlett 2009:1126–1130. https://doi.org/10.1055/s-0029-1216631

    Article  CAS  Google Scholar 

  64. Bian RN, Xu X, Feng T, Dong WK (2021) A novel O-phenanthroline-based bis (half-Salamo)-like chemical sensor: for rapid and efficient continuous recognition of Cu2+, HPO42− and H2PO4. Inorg Chim Acta 516:120098. https://doi.org/10.1016/j.ica.2020.120098

    Article  CAS  Google Scholar 

  65. Wang JF, Xu X, Bian RN, Dong WK, Ding YJ (2021) Investigation on structurally different Cu (II) and Ni (II) complexes constructed from a novel pyridine-terminal Salamo-like ligand. Inorg Chim Acta 516:120095. https://doi.org/10.1016/j.ica.2020.120095

    Article  CAS  Google Scholar 

  66. Cui YF, Liu C, Zhang Y, Zhang Y (2021) Newly designed and synthesized heterobimetallic [CuII–DyIII] Salamo-like complex: structural characterization, DFT calculation, and fluorescent property. Inorg Nano-Met Chem 51:288–295. https://doi.org/10.1080/24701556.2020.1776735

    Article  CAS  Google Scholar 

  67. Wang JF, Bian RN, Feng T, Xie KF, Wang L, Ding YJ (2021) A highly sensitive dual-channel chemical sensor for selective identification of B4O72−. Microchem J 160:105676. https://doi.org/10.1016/j.microc.2020.105676

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Su-Xia Gao: Data curation, Formal analysis, Investigation, Methodology, Project administration.

Xin Xu: Formal analysis, Investigation, Writing-original draft.

Yang Zhang: Formal analysis, Investigation.

Wen-Kui Dong: Conceptualization, Funding acquisition, Resources, Supervision.

Corresponding author

Correspondence to Wen-Kui Dong.

Ethics declarations

Competing Interests

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. A new bis(salamo)-based fluorogenic sensor H2BS for recognition of Cu2+ and B4O72- was synthesized.

2. H2BS can be used to quantitatively detect Cu2+ content in tap water.

3. H2BS test paper used to quickly identify Cu2+ and B4O72- has been prepared.

Supplementary Information

ESM 1

(DOCX 988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, SX., Xu, X., Zhang, Y. et al. A Bis(Salamo)-Based Fluorogenic Sensor for Highly Selective and Sequential Recognition of Cu2+ and B4O72− Ions in Semi-Aqueous Medium. J Fluoresc 31, 817–833 (2021). https://doi.org/10.1007/s10895-021-02717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02717-0

Keywords

Navigation