Skip to main content
Log in

Excited State Intramolecular Proton Transfer (ESIPT)-Based Sensor for Ion Detection

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

C-2 and C-5 substituted imidazole skeleton was synthesized through a one-pot two-step strategy. Synthesized molecule emits the light on ESIPT (excited-state intramolecular proton transfer). This molecule was utilized for its proton donor ability, and we have observed that fluoride and cyanide ions can be detected selectively. Different cations and anions were selected to observe the response of the synthesized molecule. However, there were not any fluorometric and colorimetric response except for fluoride and cyanide ions. Detection limits of fluoride and cyanide ions were found to be 9.22 μM and 11.48 μM, respectively. 1H-NMR spectra for the solution of the sensor and TBAF (tetrabuthylammoniumfluoride) were used for the identification of [L][HF2] species. 3 equiv. TBAF saturated the solution of the sensor in d6-DMSO, and some of the proton resonances shifted to upfield due to the through-bond effect. The disappearance of NH proton with 0.5 equiv. TBAF or TBACN (tetrabuthylammoniumcyanide) showed that there was a proton abstraction by fluoride and cyanide ions, instead of the hydrogen bond. Solid-state application was utilized, and paper test strips were applied. Emission differences emerged when the sensor loaded strips were reacted with TBAF. Time resolved experiments revealed that solution of the sensor and TBAF in DMSO have multiexponential decay, and one of the lifetime was measured as 13.4 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility

Supplementary material related to this article can be found, in the online version, at doi:

References

  1. Singh P, Mittal LS, Kumar S, Bhargava G (2014) Perylenediimide appended with 8-Hydroxyquinoline for ratiometric detection of Cu2+ ions and metal displacement driven “Turn on” cyanide sensing. J Fluoresc 24:909–915. https://doi.org/10.1007/s10895-014-1371-6

    Article  CAS  PubMed  Google Scholar 

  2. Kong F, Liu Q, Wu X, Wang Z, Chen Q, Chen L (2011) 2-(4-Formylphenyl)phenanthroimidazole as a colorimetric and fluorometric probe for selective fluoride ion sensing. J Fluoresc 21:1331–1335. https://doi.org/10.1007/s10895-011-0858-7

    Article  CAS  PubMed  Google Scholar 

  3. Mukherjee S, Paul AK (2015) Pyrene based chemosensor for selective sensing of fluoride in aprotic and protic environment. J Fluoresc 25:1461–1467. https://doi.org/10.1007/s10895-015-1636-8

    Article  CAS  PubMed  Google Scholar 

  4. Zhou Y, Zhang JF, Yoon J (2014) Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem Rev 24:5552–5571. https://doi.org/10.1021/cr400352m

    Article  CAS  Google Scholar 

  5. Beer PD, Gale PA (2001) Anion recognition and sensing: The state of the art and future perspectives. Angew Chem Int Ed 40:486–516. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P

    Article  CAS  Google Scholar 

  6. Carroll CN, Coombs BA, McClintock SP, Johnson CA, Berryman OB, Johnson DW, Haley MM (2012) Anion-dependent fluorescence in bis (anilinoethynyl) pyridine derivatives: switchable ON–OFF and OFF–ON responses. Chem Commun 47:5539–5541. https://doi.org/10.1039/C1CC10947B

    Article  Google Scholar 

  7. Zang L, Jiang S (2015) Substituent effects on anion sensing of salicylidene Schiff base derivatives: Tuning sensitivity and selectivity. Spectrochim Acta A 150:814–820. https://doi.org/10.1016/j.saa.2015.06.028

    Article  CAS  Google Scholar 

  8. Xu S, Chen K, Tian H (2005) A Colorimetric and fluorescent cemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine. J Mater Chem 15:2676–2680. https://doi.org/10.1039/B501159K

    Article  CAS  Google Scholar 

  9. Sohn H, Letant S, Sailor MJ, Trogler WC (2000) Detection of fluorophosphonate chemical warfare agents by catalytic hydrolysis with a porous silicon interferometer. J Am Chem Soc 122:5399–5400. https://doi.org/10.1021/ja0006200

    Article  CAS  Google Scholar 

  10. Kanduti D, Sterbenk P, Artnik B (2016) Fluoride: a review of use and effects on health. Mater Soc 28:133–137. https://doi.org/10.5455/msm.2016.28.133-137

    Article  Google Scholar 

  11. Peckham S, Awofeso N (2014) Water fluoridation: a critical review of the physiological effects of ingested fluoride as a public health intervention. Sci World J 2014:1–10. https://doi.org/10.1155/2014/293019

    Article  CAS  Google Scholar 

  12. Promchat A, Rashatasakhon P, Sukwattanasinitt M (2017) A novel indolium salt as a highly sensitive and selective fluorescent sensor for cyanide detection in water. J Hazard Mater 329:255–261. https://doi.org/10.1016/j.jhazmat.2017.01.024

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Li L, Zhang L, Borowitz JL, Isom GE (2009) Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2up-regulation and reduced Bcl-2 expression. Toxicol Appl Pharmacol 238:11–19. https://doi.org/10.1016/j.taap.2009.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiong XZ, Ling J, Liu H, Hong W, Xia T, He P, Chen XM, Yang KD, Wang AG (2007) Dose–effect relationship between drinking water fluoride levels anddamage to liver and kidney functions in children, environ. Res 103:112–116. https://doi.org/10.1016/j.envres.2006.05.008

    Article  CAS  Google Scholar 

  15. Finkelman RB, Belkin HE, Zheng B (1999) Health impacts of domestic coal use in China, proc. Natl Acad Sci 96:3427–3431. https://doi.org/10.1073/pnas.96.7.3427

    Article  CAS  Google Scholar 

  16. guan ZZ, Wang YN, Xiao KQI, Dai DY, Chen YH, Sindelar P, Dallenr G (1998) influence of chronic fluorosis on membrane lipids in rat brain. Neurotoxicol Teratol 20:537–542. https://doi.org/10.1016/S0892-0362(97)00136-0

    Article  CAS  PubMed  Google Scholar 

  17. Fluoride in drinking-water background document for development of WHO guidelines for drinking-water Quality, 2004 WHO/SDE/WSH/03.04/96. İsim yok

  18. Andreas R, Raf K, Jay R, Norbert S, Wolfgang H (2006) Alkali metal cyanides. Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.i01_i01

  19. Logue BA, Hinkens DM, Baskin SI, Rockwood GA (2010) Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure. Crit Rev Anal Chem 40:122–147. https://doi.org/10.1021/ac403846s

    Article  CAS  Google Scholar 

  20. Mudder TI, Botz MM (2004) Cyanide treatment: physical, chemical and biological processes. Eur J Miner Process Environ Prot 4:62–74. https://doi.org/10.1016/S0167-4528(05)15028-5

    Article  Google Scholar 

  21. Razanamahandry LC, Karouni H, Andrianisa HA, Yacouba H (2017) Bioremediation of soil and water polluted by cyanide: A review. Afr J Environ Sci Technol 11(6):272–291. https://doi.org/10.5897/AJEST2016.2264

    Article  CAS  Google Scholar 

  22. Guidelines for Drinking-Water Quality, World Health Organization, 4th ed. Geneva, 1996

  23. Li X, Hu B, Li J, Lu P, Wang Y (2014) Fluoride anion detection based on the excited-state intramolecular proton transfer (ESIPT) of 2-(o-hydroxyphenyl) imidazole induced by the Si–O cleavage of its silyl ether. Sensor Actuat B-Chem 203:635–640. https://doi.org/10.1016/j.snb.2014.07.014

    Article  CAS  Google Scholar 

  24. Bozdemir OA, Sozmen F, Buyukcakir O, Guliyev R, Cakmak Y, Akkaya EU (2010) Reaction-based sensing of fluoride ions using built-in triggers for intramolecular charge transfer and photoinduced electron transfer. Org Lett 12:1400–1404. https://doi.org/10.1021/ol100172w

    Article  CAS  PubMed  Google Scholar 

  25. Yu Y, Shu T, Fu C, Yu B, Zhang D, Luo H, Chen J, Dong C (2017) a novel colorimetric sensor based on BODIPY-coumarin dye for simultaneous detection of cyanide and fluoride. J Lumin 186:212–218. https://doi.org/10.1016/j.jlumin.2017.02.031

    Article  CAS  Google Scholar 

  26. Huang CY, Wan CF, Chir JL, Wu AT (2013) A Schiff-based colorimetric fluorescent sensor with the potential for detection of fluoride ions. J Fluoresc 23:1107–1111. https://doi.org/10.1007/s10895-013-1257-z

    Article  CAS  PubMed  Google Scholar 

  27. Sarveswari S, Beneto AJ, Siva a (2017) colorimetric sensing of cyanide and fluoride ions by diaminomalenonitrile based Schiff bases, Sensor Actuat B-Chem 245:428–434. https://doi.org/10.1016/j.snb.2017.01.174

  28. Cha S, Jeon L, Choi MG, Choe JI, Chang SK (2010) Effects of boronic acid on the fluoride-selective chemosignaling behavior of a merocyanine dye. Bull Kor Chem Soc 31:1309–1313. https://doi.org/10.5012/bkcs.2010.31.5.1309

    Article  CAS  Google Scholar 

  29. Anzenbacher P, Tyson DS, Jursikova K, Castellano FN (2002) Luminescence lifetime-based sensor for cyanide and related anions. J Am Chem Soc 124:6232–6233. https://doi.org/10.1021/ja0259180

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Wei W, Qi X, Zuo G, Fang J, Dong W (2016) Highly selective colorimetric/fluorometric dual-channel sensor for cyanide based on ICT off in aqueous solution. Sensor Actuat B-Chem B 228:330–334. https://doi.org/10.1016/j.snb.2016.01.055

    Article  CAS  Google Scholar 

  31. Thanayupong E, Suttisintong K, Sukwattanasinitt M, Niamnont N (2017) Turn-on fluorescent sensor for the detection of cyanide based on a novel dicyanovinyl phenylacetylene, new J. Chem. 41:4058–4064. https://doi.org/10.1039/C6NJ03794A

    Article  CAS  Google Scholar 

  32. Dai Z, Boon EM (2010) Engineering of the Heme pocket of an H-NOX domain for direct cyanide detection and quantification. J Am Chem Soc 132(33):11496–11503. https://doi.org/10.1021/ja101674z

    Article  CAS  PubMed  Google Scholar 

  33. Saha S, Ghosh A, Mahato P, Mishra S, Mishra SK, Suresh E, Das S (2010) A specific recognition and sensing of CN in sodium cyanide solution. Org Lett 12:3406–3409. https://doi.org/10.1021/ol101281x

    Article  CAS  PubMed  Google Scholar 

  34. Lee JH, Jeong AR, Shin IS, Kim HJ, Hong JI (2010) Fluorescence turn-on sensor for cyanide based on a cobalt (II)−coumarinylsalen complex. Org Lett 12(4):764–767. https://doi.org/10.1021/ol902852g

    Article  CAS  PubMed  Google Scholar 

  35. Xu JF, Chen HH, Chen Y, Li ZJ, Wu LZ (2012) a colorimetric and fluorometric dual-modal chemosensor for cyanide in water, sensor. Actuat B-Chem B 118:14–19. https://doi.org/10.1016/j.snb.2011.12.101

    Article  CAS  Google Scholar 

  36. Zhou Y, Zhang JF, Yoon J (2014) Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem Rew 114:5511–5571. https://doi.org/10.1021/cr400352m

    Article  CAS  Google Scholar 

  37. Jiang X, Vieweger MC, Bollinger JC, Dragnea B, Lee D (2007) Reactivity-based fluoride detection: evolving design principles for spring-loaded turn-on fluorescent probes. Org Lett 9:3579–3582. https://doi.org/10.1021/ol7014187

    Article  CAS  PubMed  Google Scholar 

  38. Sokkalingam P, Lee CH (2011) Highly sensitive fluorescence “turn-on” indicator for fluoride anion with remarkable selectivity in organic and aqueous media. J Organomet Chem 76:3820–3828. https://doi.org/10.1021/jo200138t

    Article  CAS  Google Scholar 

  39. Busschaert N, Caltagirone C, Rossom WV, Gale PA (2015) Applications of supramolecular anion recognition. Chem Rev 115:8038–8155. https://doi.org/10.1021/acs.chemrev.5b00099

    Article  CAS  PubMed  Google Scholar 

  40. Kuzu B, Tan M, Ekmekci Z, Menges N (2019) A novel structure for ESIPT emission: experimental and theoretical investigations. J Photo A Chemistry 381:111874. https://doi.org/10.1016/j.jphotochem.2019.111874

    Article  CAS  Google Scholar 

  41. Mancini DT, Sen K, Barbatti M, Thiel W, Ramalho TC (2015) Excited-state proton transfer can tune the color of protein fluorescent markers. ChemPhysChem 16:3444–3449. https://doi.org/10.1002/cphc.201500744

    Article  CAS  PubMed  Google Scholar 

  42. Kuzu B, Tan M, Ekmekci Z, Menges N (2017) A novel fluorescent sensor based on imidazole derivative for Fe3+ ions. J Lumin 192:1096–1103. https://doi.org/10.1016/j.jlumin.2017.08.057

    Article  CAS  Google Scholar 

  43. Cao X, Lin W, Yu Q, Wang J (2011) Ratiometric sensing of fluoride anions based on a BODIPY-Coumarin platform. Org Lett 13:6098–6101. https://doi.org/10.1021/ol202595t

    Article  CAS  PubMed  Google Scholar 

  44. Salomon-Flores MK, Bazany-Rodriguez IJ, Martinez-Otero D, Garcia-Eleno MA, Guerra-Garcia JJ, Morales-Morales D, Dorazco-Gonzales A (2017) Bifunctional colorimetric chemosensing of fluoride and cyanide ions by nickel-POCOP pincer receptors. Dalton Trans 46:4950–4959. https://doi.org/10.1039/C6DT04897H

    Article  CAS  PubMed  Google Scholar 

  45. Guliyev R, Ozturk S, Sahin E, Akkaya EU (2012) Expanded bodipy dyes: anion sensing using a bodipy analog with an additional difluoroboron bridge. Org Lett 14:1528–1531. https://doi.org/10.1021/ol300260q

    Article  CAS  PubMed  Google Scholar 

  46. Isaac IO, Munir I, Al-Rashida M, Ali SA, Shafiq Z, Islam M, Ludwig R, Ayub K, Khan KM, Hameed A (2018) Novel acridine-based thiosemicarbazones as ‘turn-on’ chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study. R Soc Open Sci 5:180646. https://doi.org/10.1098/rsos.180646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sarveswari S, Beneto AJ, Siva A (2017) Colorimetric sensing of cyanide and fluoride ions by diaminomalenonitrile based Schiff bases. Sensor Actuat B-Chem 245:428–434. https://doi.org/10.1016/j.snb.2017.01.174

    Article  CAS  Google Scholar 

  48. Mahapatra AK, Manna SK, Pramanik B, Maiti K, Mondal S, Ali SS, Mandal D (2015) Colorimetric and ratiometric fluorescent chemodosimeter for selective sensing of fluoride and cyanide ions: tuning selectivity in proton transfer and C–Si bond cleavage. RSC Adv 5:10716–10722

    Article  CAS  Google Scholar 

  49. Lee M, HunMoon J, Swamy KMK, Jeong Y, Kim G, Choi J, Lee JY, Yoon J (2014) A new bis-pyrene derivative as a selective colorimetric and fluorescent chemosensor for cyanide and fluoride and anion-activated CO2 sensing. Sensor Actuat B-Chem 199:369–376. https://doi.org/10.1016/j.snb.2014.04.005

    Article  CAS  Google Scholar 

  50. Balaji T, Matsunaga H (2005) Naked-eye detection of fluoride using Zr(IV)-EDTA complex and pyrocatechol violet. Anal Sci 21:973–977. https://doi.org/10.2116/analsci.21.973

    Article  CAS  PubMed  Google Scholar 

  51. Ekmekci Z, Yilmaz G, Duman E (2020) Switching among logic XNOR, implication and inhibit gates at molecular level and selectively sensing of Cu2+. Chem Phys 532:110693. https://doi.org/10.1016/j.chemphys.2020.110693

    Article  CAS  Google Scholar 

  52. Perez-Casas C, Yatsimirsky AK (2008) Detailing hydrogen bonding and deprotonation equilibria between anions and urea/thiourea derivatives. J Org Chem 73:2275–2284. https://doi.org/10.1021/jo702458f

    Article  CAS  PubMed  Google Scholar 

  53. Schah-Mohammedi P, Shenderovich IG, Detering C, Limbach HH, Tolstoy PM, Smirnov SN, Denisov GS, Golubev NS (2000) Hydrogen/deuterium-isotope effects on NMR chemical shifts and symmetry of homoconjugated hydrogen-bonded ions in polar solution. J Am Chem Soc JACS 122:12878–12879. https://doi.org/10.1021/ja0017615

    Article  CAS  Google Scholar 

  54. Perera SA, Bartlett RJ (2000) NMR spin−spin coupling constants for hydrogen bonds of [F (HF)n]-, n = 1–4, Clusters. J Am Chem Soc 122:1231–1232

    Article  CAS  Google Scholar 

  55. Celis S, Pi-Boleda B, Nolis P, Illa O, Branchadell V, Ortuno RM (2016) Synthesis, selectivity and structural study of newc3-symmetric tripodal amides as anion receptors. An experimental and theoretical approach. Chemistry Select 1:1887–1892. https://doi.org/10.1002/slct.201600560

    Article  CAS  Google Scholar 

  56. Boiocchi M, Boca LD, Gómez DE, Fabbrizzi L, Licchelli M, Monzani E (2004) Nature of Urea−Fluoride Interaction: Incipient and Definitive Proton Transfer. J Am Chem Soc 126:16507–16514. https://doi.org/10.1021/ja045936c

    Article  CAS  PubMed  Google Scholar 

  57. Raynes WT (1971) Through-bond and through-space effects on proton chemical shifts. The magnetic anisotropy effects of freely rotating -XY3 groups upon distant protons. Mol Phys 20(2):321–338. https://doi.org/10.1080/00268977100100301

    Article  CAS  Google Scholar 

  58. Frisch MJ, et al. (2009) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT

  59. Geometric optimization was done employing DFT/B3LYP, 6-311G (d,p). Further energy calculation was completed using same method and basic set

  60. Du M, Huo B, Li M, Shen A, Bai X, Lai Y, Liu J, Yang Y (2018) A “turn-on” fluorescent probe for sensitive and selective detection of fluoride ions based on aggregation-induced emission. RSC Adv 8:32497–32505. https://doi.org/10.1039/c8ra06774k

    Article  CAS  Google Scholar 

  61. Pan G, Xia T, He Y (2020) A tetraphenylethylene-based aggregation-induced emission sensor: ultrasensitive “turn-on” fluorescent sensing for phosphate anion in pure water. Talanta 231:121434. https://doi.org/10.1016/j.talanta.2020.121434

    Article  CAS  Google Scholar 

  62. Chua MH, Shah KW, Zhou H, Xu J (2019) Recent advances in aggregation-induced emission Chemosensors for anion sensing. Molecules 24:2711–2743. https://doi.org/10.3390/molecules24152711

    Article  CAS  PubMed Central  Google Scholar 

  63. Anzenbacher P, Tyson DS, Jursikova K, Castellano FN (2002) Luminescence lifetime-based sensor for cyanide and related anions. J Am Chem Soc 124:6232–6233. https://doi.org/10.1021/ja0259180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank to the Scientific and Technological Research Council of Turkey (TUBITAK) for funding the study. NMR data was taken from Science Research and Application Center of Van YYÜ. For this reason, the authors are thankful to the head of the center.

Funding

This study was funded by TÜBİTAK (grand number:115Z112).

Author information

Authors and Affiliations

Authors

Contributions

Burak Kuzu and Meltem Tan progressed experiments, Zeynep Ekmekci made measurements of absorbance and fluorescence experiments, Nurettin Menges organized the theoretical and experimental results, and wrote the manuscript. All authors proved the final version of the manuscript.

Corresponding author

Correspondence to Nurettin Menges.

Ethics declarations

Competing Interests

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzu, B., Ekmekci, Z., Tan, M. et al. Excited State Intramolecular Proton Transfer (ESIPT)-Based Sensor for Ion Detection. J Fluoresc 31, 861–872 (2021). https://doi.org/10.1007/s10895-021-02716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02716-1

Keywords

Navigation