Skip to main content
Log in

Binding of Two Tetrasulfophthalocyanines (Fe(III) and Metal-Free) to Lysozyme: Fluorescence Spectroscopic and Computational Approach

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The interactions between tetrasulfophthalocyanines and lysozyme were studied using fluorescence spectroscopic and computational analyses. Lysozyme has been found to be widely studied as an anticancer agent, however, there are few reports of its interaction with phthalocyanines. Fe(III) tetrasulfophthalocyanine (FeTSPc) and free base tetrasulfophthalocyanine (TSPc) used in this study, were synthesized by our research group. Experimental results suggested that the metalled complex FeTSPc has a much higher affinity than TSPc. The binding stoichiometry between each tetrasulfophthalocyanine and lysozyme was 1:1. Stern−Volmer analysis suggested that the fluorescence quenching proceedes through a static process. Binding thermodynamics (ΔG, ΔH and ΔS) confirmed that mainly hydrogen bonds, van der Waals, and electrostatic forces are responsible for the binding process. We carried out molecular dynamics simulations, molecular docking, and binding energy calculations. Molecular dynamics simulations yielded the most populated cluster of lysozyme structures, and a representative structure from this cluster was used for the docking studies with these phthalocyanines. 1000 poses were generated for each ligand. The strudtures of the resulting complexes revealed that Arg 73 and Arg 112 are important for the binding affinity of the tetrasulfophthalocyanines, generating mainly an electrostatic favorable environment for the SO3 groups. In addition, hydrophobic contacts were involved with Trp 62, Trp 63 and Trp 108, explaining the fluorescence quenching observed experimentally. Binding energies were determined for these models, confirming that the interactions with lysozyme were more favorable for FeTSPc compared to TSPc. The understanding of the molecular mechanisms is relevant to characterize the nature of tetrasulfophthalocyanines in photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A(280 nm, 1%) :

masss extinction coefficient

APBS:

Adaptive Poisson-Boltzmann Solver

ΔGCoul :

Coulombic energy

ΔGelec :

electrostatic energy

ΔGcalc :

binding free energy

ΔG:

Gibbs free energy change

ΔGnon-elec :

non-electrostatic energy

ΔGsolv :

solvation energy

ΔH:

enthalpy change

ΔS:

entropy change

ΔSASA:

solvent-accessible surface area change

FeTSPc:

Fe(III) tetrasulfophthalocyanine

F0 or F:

fluorescence intensities

γ:

interfacial tension coefficient

Kb :

binding equilibrium constant

KSV :

Stern-Volmer constant

kq :

quenching rate constant

λexc :

excitation wavelength

λem :

emission wavelength

NAMD:

Not Another Molecular Dynamics Program

n :

number of binding sites

Q:

molar concentration

R:

gas constant

RMSD:

Root-Mean-Square Deviation

T:

absolute temperature

τ0 :

average lifetime of biomolecules

TSPc:

free base tetrasulfophthalocyanine

UV-Vis:

Ultraviolet-Visible

VMD:

Visual Molecular Dynamics

References

  1. Örstan A, Wojcik JF (1987) Spectroscopic determination of protein-ligand binding constants. J Chem Educ 64:814–816. https://doi.org/10.1021/ed064p814

    Article  Google Scholar 

  2. Marcoline AT, Elgren TE (1988) A thermodynamic study of azide binding myoglobin. J Chem Educ 75:1622–1623. https://doi.org/10.1021/ed075p1622

    Article  Google Scholar 

  3. Banerjee S, Choudhury SD, Dasgrupta S, Basu S (2008) Photoinduced electron transfer between hen egg white lysozyme and anticancer drug menadione. J Lumin 128:437–444. https://doi.org/10.1016/j.jlumin.2007.09.020

    Article  CAS  Google Scholar 

  4. Mitra P, Banerjee M, Biswas S, Basu S (2013) Protein interactions of merocyanine 540: spectroscopic and crystallographic studies with lysozyme as a model protein. J Photochem Photobiol B Biol 121:46–56. https://doi.org/10.1016/j.jphotobiol.2013.02.010

    Article  CAS  Google Scholar 

  5. García-Sánchez MA, Rojas-González F, Menchaca-Campos EC, Tello-Solís SR, Quiroz-Segoviano RIY, Díaz-Alejo LA, Salas-Bañales E, Campero C (2013) Crossed and linked histories of tetrapyrrolic macrocycles and their use for engineering pores within sol-gel matrices. Molecules 18:588–653. https://doi.org/10.3390/molecules18010588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yano S, Hirohara S, Obata M, Hagiya Y, Ogurad SI, Ikeda A, Kataoka H, Tanaka M, Joh T (2011) Current states and future views in photodynamic therapy. J Photochem Photobiol C 12:46–67. https://doi.org/10.1016/j.jphotochemrev.2011.06.001

    Article  CAS  Google Scholar 

  7. Castano AP, Demidova TN, Hamblin M (2004) Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293. https://doi.org/10.1016/S1572-1000(05)00007-4

    Article  CAS  Google Scholar 

  8. Li S, Li D (2011) Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance. Spectrochim Acta A Mol Biomol Spectrosc 82:396–405. https://doi.org/10.1016/j.saa.2011.07.069

    Article  CAS  PubMed  Google Scholar 

  9. Nash JA, Ballard TNS, Weaver TE, Akinbi HT (2006) The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo. J Immunol 177:519–526. https://doi.org/10.4049/jimmunol.177.1.519

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh KS, Sahoo BK, Dasgupta S (2008) Spectrophotometric studies on the interaction between (−)-epigallocatechin gallate and lysozyme. Chem Phys Lett 452:193–197. https://doi.org/10.1016/j.cplett.2007.12.018

    Article  CAS  Google Scholar 

  11. Wang W, Min W, Chen J, Wu X, Hu Z (2011) Binding study of diprophylline with lysozyme by spectroscopic methods. J Lumin 131:354–359. https://doi.org/10.1016/j.jlumin.2010.12.010

    Article  CAS  Google Scholar 

  12. Li D, Zhu J, Jin J (2007) Spectrophotometric studies on the interaction between nevadensin and lysozyme. J Photochem Photobiol A 189:114–120. https://doi.org/10.1016/j.jphotochem.2007.01.017

    Article  CAS  Google Scholar 

  13. Kovalska V, Chernii S, Cherepanov V, Losytskyy M, Chernii V, Varzatskii O, Naumovets A, Yarmoluk S (2017) The impact of binding of macrocyclic metal complexes on amyloid fibrillization of insulin and lysozyme. J Mol Recognit 30:1–10. https://doi.org/10.1002/jmr.2622

    Article  CAS  Google Scholar 

  14. Coahuila-Hernández MI, García-Sánchez MA, Soto Estrada AM, Campero A (2006) Lanthanide tetrasulfophthalocyanines incorporated to SiO2 gels. J Sol-Gel Sci Techn 37:117–120. https://doi.org/10.1007/s10971-006-6429-8

    Article  CAS  Google Scholar 

  15. Ito Y, Yoshikawa A, Hotani T, Fukuda S, Sugimura K, Imoto T (1999) Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur J Biochem 259:456–461. https://doi.org/10.1046/j.1432-1327.1999.00064.x

    Article  CAS  PubMed  Google Scholar 

  16. Andrade SM, Costa SM (2002) Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophys J 82:1607–1619. https://doi.org/10.1016/S0006-3495(02)75512-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samari F, Hemmateenejad B, Shamsipur M, Rashidi M, Samouei H (2012) Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: a spectroscopic approach. Inorg Chem 51:3454–3464. https://doi.org/10.1021/ic202141g

    Article  CAS  PubMed  Google Scholar 

  18. Zhao P, Huang JW, Ji LN (2012) Cationic pyridinium porphyrins appending different peripheral substituents: spectroscopic studies on their interactions with bovine serum albumin. Spectrochim Acta A 88:130–136. https://doi.org/10.1016/j.saa.2011.12.017

    Article  CAS  Google Scholar 

  19. Mansouri M, Pirouzi M, Saberi MR, Ghaderabad M, Chamani J (2013) Investigation on the interaction between cyclophosphamide and lysozyme in the presence of three different kind of cyclodextrins: determination of the binding mechanism by spectroscopic and molecular modeling techniques. Molecules 18:789–813. https://doi.org/10.3390/molecules18010789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang J, Dauter M, Alkire R, Joachimiak A, Dauter Z (2007) Triclinic lysozyme at 0.65 a resolution. Acta Crystallogr. Sect D: Biol Crystallogr 63:1254–1268. https://doi.org/10.1107/S0907444907054224

    Article  CAS  Google Scholar 

  21. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Im W (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12:405–413. https://doi.org/10.1021/acs.jctc.5b00935

    Article  CAS  PubMed  Google Scholar 

  22. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Im W (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004. https://doi.org/10.1002/jcc.23702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  24. Phillips JC, Braun R, Wang W, Gumbar J, Tajkhorshid E, Villa E, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mezei M (2010) Simulaid: a simulation facilitator and analysis program. J Comput Chem 31:2658–2668. https://doi.org/10.1002/jcc.21551

    Article  CAS  PubMed  Google Scholar 

  27. Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. ChemAxon (2019). Marvin 19.20. Retrieved from www.chemaxon.com

  29. Schrödinger L (2019). Maestro. Schrödinger Release 2019–3. New York, NY

  30. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–11004. https://doi.org/10.1073/pnas.181342398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lira-De León KI, García-Gutiérrez P, Serratos IN, Palomera-Cárdenas M, Figueroa-Corona MP, Campos-Peña V, Meraz-Ríos MA (2013) Molecular mechanism of tau aggregation induced by anionic and cationic dyes. J Alzheimers Dis 35:319–334. https://doi.org/10.3233/JAD-121765

    Article  CAS  PubMed  Google Scholar 

  32. Moral-Rodríguez AI, Leyva-Ramos R, Ocampo-Pérez R, Mendoza-Barron J, Serratos-Alvarez IN, Salazar-Rabago JJ (2016) Removal of ronidazole and sulfamethoxazole from wáter solutions by adsorption on granular activated carbon: equilibrium and intra particle diffusion mechanisms. Adsorption 22:89–103. https://doi.org/10.1007/s10450-016-9758-0

    Article  CAS  Google Scholar 

  33. Bustos-Terrones V, Serratos IN, Castañeda-Villa N, Vicente Escobar JO, Romero Romo MA, Córdoba G, Uruchurtu Chavarín J, Menchaca Campos C, Esparza Schulz JM, Domínguez Ortiz A (2018) Functionalized coatings based on organic polymer matrix against the process of corrosion of mild steel in neutral medium. Prog Org Coat 119:221–229. https://doi.org/10.1016/j.porgcoat.2017.12.011

    Article  CAS  Google Scholar 

  34. Bustos-Terrones V, Serratos IN, Vargas R, Landeros-Rivera BC, Bustos-Terrones YA, Soto Estrada AM, Vicente Escobar JO, Romero Romo MA, Uruchurtu J, Menchaca C, Esparza Schulz JM, Domínguez A (2018) SBA15–fluconazole as a protective approach against mild steel corrosion: synthesis, characterization, and computational studies. ChemistryOpen 7:984–994. https://doi.org/10.1002/open.201800201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Serratos IN, Olayo R, Millán-Pacheco C, Morales-Corona J, Vicente-Escobar JO, Soto-Estrada AM, Córdoba-Herrera JG, Uribe O, Gómez-Quintero T, Arroyo-Ornelas MA, Godínez-Fernández R (2019) Modeling integrin and plasma-polymerized pyrrole interactions: chemical diversity relevance for cell regeneration. Sci Rep 9:7009. https://doi.org/10.1038/s41598-019-43286-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res Spec Publ 32:W665–W667. https://doi.org/10.1093/nar/gkh381

    Article  CAS  Google Scholar 

  37. MacKerell AD Jr, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. https://doi.org/10.1021/jp973084f

    Article  CAS  PubMed  Google Scholar 

  38. Sondergaard CR, Olsson MH, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput 7:2284–2295. https://doi.org/10.1021/ct200133y

    Article  CAS  PubMed  Google Scholar 

  39. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988. https://doi.org/10.1021/j100058a043

    Article  CAS  Google Scholar 

  40. Levy RM, Zhang LY, Gallicchio E, Felts AK (2003) On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. J Am Chem Soc 125:9523–9530. https://doi.org/10.1021/ja029833a

    Article  CAS  PubMed  Google Scholar 

  41. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  42. An W, Jiao Y, Dong C, Yang C, Inoue I, Shuang S (2009) Spectroscopic and molecular modeling of the binding of meso-tetrakis(4-hydroxyphenyl)porphyrin to human serum albumin. Dyes Pigments 81:1–9. https://doi.org/10.1016/j.dyepig.2008.08.004

    Article  CAS  Google Scholar 

  43. Hu Y, Zhang G, Yan J (2014) Detection of interaction between lysionotin and bovine serum albumin using spectroscopic techniques combined with molecular modeling. Mol Biol Rep 41:1693–1702. https://doi.org/10.1007/s11033-013-3018-0

    Article  CAS  PubMed  Google Scholar 

  44. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  45. Jiménez-Pérez C, Tello-Solís SR, Gómez-Castro CZ, Alatorre-Santamaría S, Gómez-Ruíz L, Rodríguez-Serrano G, Cruz-Borbolla J, García-Garibay M, Cruz-Guerrero A (2020) Spectroscopic studies and molecular modelling of aflatoxin M1-bovine α-lactalbumin complex formation. J Photoch Photobio B 111957:1-8 (online). https://doi.org/10.1016/j.jphotobiol.2020.111957

  46. Lakowicz JR (2006) Introduction to fluorescence, in: principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  47. Delavari B, Saboury AA, Atri MS, Ghasemi A, Bigdeli B, Khammari A, Maghami P, Moosavi-Movahedi AA, Haertlé T, Goliaei B (2015) Alpha-lactalbumin: a new carrier for vitamin D3 food enrichment. Food Hydrocoll 45:124–131. https://doi.org/10.1016/j.foodhyd.2014.10.017

    Article  CAS  Google Scholar 

  48. Suryawanshi VD, Walekar LS, Gore AH, Anbhule PV, Kolekar GB (2016) Spectroscopicanalysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. J Pharm Anal 6:56–63. https://doi.org/10.1016/j.jpha.2015.07.001

    Article  PubMed  Google Scholar 

  49. Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17:1–34. https://doi.org/10.3390/ijms17020144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Nina Pastor Colón, for helpful discussions and advise as well as her help with the revision of the English language. J.O.V.E thanks CONACyT for the posgraduate scholarship No. 130442 for the studies of Master of Sciences (Chemistry). The Laboratorio de Visualización y Cómputo Paralelo at Universidad Autónoma Metropolitana Iztapalapa is acknowledged for computing time.

Availability of Data and Material

The authors have no any objection for availability of data and materials.

Code Availability

Hen egg-white Lysozyme was purchased from Sigma Chemical Co. (lot. 73H7045).

Crystal structure of Hen egg-white lysozyme from Gallus Gallus. https://www.rcsb.org/structure/2VB1

ACD/ChemSketch Freeware http://www.acdlabs.com/resources/freeware/chemsketch/

Visual Molecular Dynamics (VMD) https://www.ks.uiuc.edu/Research/vmd/

NAMD https://www.ks.uiuc.edu/Research/namd/

Autodock Vina http://vina.scripps.edu

Maestro https://www.schrodinger.com/products/maestro

Charmm-gui web server http://www.charmm-gui.org

PDB2PQR http://server.poissonboltzmann.org/pdb2pqr

APBS http://www.poissonboltzmann.org/

Funding

This research was supported by Universidad Autónoma Metropolitana Iztapalapa.

Author information

Authors and Affiliations

Authors

Contributions

Jonathan Osiris Vicente-Escobar: investigation, analysis, writing; Miguel Ángel García-Sánchez: investigation, review, formal analysis, resources; Iris N. Serratos: conceptualization, visualization, investigation, software, formal analysis, writing, review & editing, César Millán-Pacheco: investigation, software, formal analysis; Salvador R. Tello-Solís: conceptualization, project administration, visualization, methodology, investigation, formal analysis, writing, review, editing, & resources.

Corresponding author

Correspondence to Salvador Ramón Tello-Solís.

Ethics declarations

Ethics Approval

“Not applicable”.

Consent to Participate

All authors gave their consent to participate in the research.

Consent for Publication

All authors gave their consent to participate in the publication of the research.

Conflicts of Interest/Competing Interests

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente-Escobar, J.O., García-Sánchez, M.Á., Serratos, I.N. et al. Binding of Two Tetrasulfophthalocyanines (Fe(III) and Metal-Free) to Lysozyme: Fluorescence Spectroscopic and Computational Approach. J Fluoresc 31, 787–796 (2021). https://doi.org/10.1007/s10895-021-02710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02710-7

Keywords

Navigation