Skip to main content
Log in

A Pyrene Fluorescent Probe for Rapid Detection of Ferric Ions

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) is a pyrene derivative with high fluorescence characteristics and is widely used in fluorescence tracer. This study aims at investigating a simple and fast fluorescence detection method for determining the concentration of ferric ion by using PTSA, which the principle is that the fluorescence quenching of PTSA by ferric ions. Theoretical and experimental methods were adopted to deeply analyze its detection performance and characteristics. The fluorescence quenching phenomena under different pH conditions and the effect of the different interfering metal ions on PTSA/Fe3+ system was studied. The results showed that the PTSA was quite promising for the fluorescence detection of trace ferric ions, and the limit of detection is 9 μg/L. This study is envisioned to provide inspirational insights on trace detection of iron ions, opening new routes for water monitoring use fluorescence properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Code Availability

Not applicable.

References

  1. Cheney K, Gumbiner C, Benson B, Tenenbein M (1995) Survival after a severe Iron poisoning treated with intermittent infusions of Deferoxamine. J Toxicol Clin Toxicol 33(1):61–66

    Article  CAS  Google Scholar 

  2. Nayab PS, Shkir M (2017) Rapid and simultaneous detection of Cr (III) and Fe (III) ions by a new naked eye and fluorescent probe and its application in real samples. Sensors Actuators B Chem 251:951–957. https://doi.org/10.1016/j.snb.2017.05.102

    Article  CAS  Google Scholar 

  3. Levenson CW, Cutler RG, Ladenheim B, Cadet JL, Hare J, Mattson MP (2004) Role of dietary iron restriction in a mouse model of Parkinson's disease. Exp Neurol 190(2):506–514. https://doi.org/10.1016/j.expneurol.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  4. Liu YN, Zhang ZS, Xia JP (2013) Removal of Iron in nickel precipitation residue wastewater with magnesium oxide. In: Zeng JM, Zhu HX, Kong JY (eds) Advances in chemical, material and metallurgical engineering, Pts 1–5, vol 634-638. Advanced Materials Research. Trans Tech Publications Ltd, Stafa-Zurich, pp 254–257. https://doi.org/10.4028/www.scientific.net/AMR.634-638.254

    Chapter  Google Scholar 

  5. Laglera LM, Monticelli D (2017) Iron detection and speciation in natural waters by electrochemical techniques: a critical review. Curr Opin Electrochem 3(1):123–129. https://doi.org/10.1016/j.coelec.2017.07.007

    Article  CAS  Google Scholar 

  6. Radhakrishnan K, Sivanesan S, Panneerselvam P (2020) Turn-on fluorescence sensor based detection of heavy metal ion using carbon dots@graphitic-carbon nitride nanocomposite probe. J Photochem Photobiol A Chem 389:112204. https://doi.org/10.1016/j.jphotochem.2019.112204

    Article  CAS  Google Scholar 

  7. Salahshoor Z, Ghasemi JB, Shahbazi A, Badiei A (2019) Highly selective silica-based fluorescent nanosensor for ferric ion (Fe3+) detection in aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 218:293–298. https://doi.org/10.1016/j.saa.2019.03.118

    Article  CAS  PubMed  Google Scholar 

  8. Rajar K, Alveroglu E (2020) CNTs based water soluble fluorescent sensor for selective detection of Fe3+ ion. Mater Res Bull 124:110748. https://doi.org/10.1016/j.materresbull.2019.110748

    Article  CAS  Google Scholar 

  9. Vikneswaran R, Ramesh S, Yahya R (2014) Green synthesized carbon nanodots as a fluorescent probe for selective and sensitive detection of iron(III) ions. Mater Lett 136:179–182. https://doi.org/10.1016/j.matlet.2014.08.063

    Article  CAS  Google Scholar 

  10. Nan Z, Hao C, Zhang X, Liu H, Sun R (2020) Carbon quantum dots (CQDs) modified ZnO/CdS nanoparticles based fluorescence sensor for highly selective and sensitive detection of Fe(III). Spectrochim Acta A Mol Biomol Spectrosc 228:117717. https://doi.org/10.1016/j.saa.2019.117717

    Article  CAS  PubMed  Google Scholar 

  11. Mahajan PG, Shin JS, Dige NC, Vanjare BD, Han Y, Choi NG, Kim SJ, Seo SY, Lee KH (2020) Chelation enhanced fluorescence of rhodamine based novel organic nanoparticles for selective detection of mercury ions in aqueous medium and intracellular cell imaging. J Photochem Photobiol A Chem 397:112579. https://doi.org/10.1016/j.jphotochem.2020.112579

    Article  CAS  Google Scholar 

  12. Yin BC, You M, Tan W, Ye BC (2012) Mercury(II) ion detection via pyrene-mediated photolysis of disulfide bonds. Chemistry 18(5):1286–1289. https://doi.org/10.1002/chem.201103348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang Y, Yao Z, Tang B, Yu J, Bi X, Zhao Y, Wu H-C (2014) Visual detection of cu(ii) ions based on a simple pyrene derivative using click chemistry. Anal Methods 6(14):4977–4981. https://doi.org/10.1039/c4ay00880d

    Article  CAS  Google Scholar 

  14. Bertozo LC, Philot EA, Lima AN, de Resende Lara PT, Scott AL, Ximenes VF (2019) Interaction between 1-pyrenesulfonic acid and albumin: moving inside the protein. Spectrochim Acta A Mol Biomol Spectrosc 208:243–254. https://doi.org/10.1016/j.saa.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  15. Chen W, Zheng L, Wang L, Hu S, Wu S (2019) Experimental study on interference of Fe3+ on fluorescence detection of sodium pyrene tetrasulfonate. Ind Water Wastewater 50:61–64 (in Chinese)

    Google Scholar 

  16. Liu Z, Peng J, Li W, Deng X, T-TT H (1997) Investigation of Photophysical properties of Pyrenetetrasulfonid acid Tetrasodium salt (PyTS). Chin J Luminescence 18:161–165 (in Chinese)

    Google Scholar 

  17. Wang J, Peng Y, Guo W, Ji R, Zhao L, Jia Y, Gao C (2016) Characterization of tinopal CBS-X as a fluorescent tracer in cooling water. Instrum Sci Technol 45(3):301–311. https://doi.org/10.1080/10739149.2016.1237367

    Article  CAS  Google Scholar 

  18. Li W, Hu X, Li Q, Shi Y, Zhai X, Xu Y, Li Z, Huang X, Wang X, Shi J, Zou X, Kang S (2020) Copper nanoclusters @ nitrogen-doped carbon quantum dots-based ratiometric fluorescence probe for lead (II) ions detection in porphyra. Food Chem 320:126623. https://doi.org/10.1016/j.foodchem.2020.126623

    Article  CAS  PubMed  Google Scholar 

  19. Song J, Zhou H, Gao R, Zhang Y, Zhang H, Zhang Y, Wang G, Wong PK, Zhao H (2018) Selective determination of Cr(VI) by Glutaraldehyde cross-linked chitosan polymer Fluorophores. ACS sensors 3(4):792–798. https://doi.org/10.1021/acssensors.8b00038

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Li H, Yang Y, Zhang D, Wu M, Pan B, Xing B (2017) Identifying structural characteristics of humic acid to static and dynamic fluorescence quenching of phenanthrene, 9-phenanthrol, and naphthalene. Water Res 122:337–344. https://doi.org/10.1016/j.watres.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Liang N, Li H, Yang Y, Zhang D, Liao S, Pan B (2015) Quantifying the dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids. Environ Pollut 196:379–385. https://doi.org/10.1016/j.envpol.2014.10.029

    Article  CAS  PubMed  Google Scholar 

  22. Soemo AR, Pemberton JE (2014) Combined quenching mechanism of Anthracene fluorescence by Cetylpyridinium chloride in sodium dodecyl sulfate micelles. J Fluoresc 24(2):295–299. https://doi.org/10.1007/s10895-013-1319-2

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Wang D, Miller EK, Moses D, Heeger AJ (2001) Static and dynamic photoluminescence (PL) quenching of polymer:quencher systems in solutions. Synth Met 119(1):591–592. https://doi.org/10.1016/S0379-6779(00)00643-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Guiqiao Wang: Investigation; Methodology; Roles/Writing - original draft. Xiaowei Liu: Conceptualization; Data curation; Methodology. Shaokang Cai: Writing - review & editing. Shurong Zhang: Writing - review & editing. Jinzhi Cui: Writing - review & editing. Canzhu Gao: Project administration; Resources; Supervision. Zhongfa Cheng: Resources.

Corresponding author

Correspondence to Canzhu Gao.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors state that they have no known competing economic interests or personal relationships that may affect the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Liu, X., Cai, S. et al. A Pyrene Fluorescent Probe for Rapid Detection of Ferric Ions. J Fluoresc 31, 713–718 (2021). https://doi.org/10.1007/s10895-021-02695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02695-3

Keywords

Navigation