Skip to main content
Log in

Optical, Structural and Photoluminescence Properties of Gd x SrO: CdO Nanostructures Synthesized by Co Precipitation Method

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

To investigate the effect of Gd x SrO: CdO (x = 0.1, 0.3, 0.4) nanostructures (NS), in the present work an attempt has been made to synthesize Gdx SrO:CdO NS by co precipitation method. Structural properties were investigated by XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), UV-Visible, XPS (X-ray photoelectron spectroscopy). XRD indicates having mixed phase of tetragonal crystal structure and SEM images indicate spherical shaped nanoparticles (NPs) of Gd x SrO:CdO with average size laying in between ~100 nm to ~130 nm. FTIR spectra of Gd x SrO: CdO NS show stretching and bending peaks of Gd-O-Gd, Cd-O-Cd and Sr-OH at ~1311 cm −1, ~1486 cm −1, ~ 3300 cm −1 and UV-visible optical absorptivity of Gd x SrO:CdO show absorption maxima shift from 330 nm to 324 nm (blue shift) and edges at 352.4 nm, 348 nm and 346.3 nm respectively for Gd concentration varying between 0.1, 0.3 and 0.4. binding energies of the Gd 3d 3/2, Sr 3d 3/2 and Cd 3d 3/2, O1s and C1s observed at 150.8 eV, 141.6 eV, 410.1 eV, 529.6 eV and 282.4 eV respectively which confirms the chemical composition of NS. Photoluminescence (PL) spectrum of Gd 0.4 Sr 0.5 O Cd 0.1O NS exhibit broad peaks from 338 nm to 397 nm centred around 369 nm with various Gd, O, Sr and Cd related native defects. Emission band observed at UV- Visible region for Gd 0.3 Sr 0.5 O Cd 0.2 O NS PL emission spectra has two emission peaks at 369 nm (UV region) and 550 nm (Visible region). The transitions can be ascertained with shielding of 4f shells of Gd+3 ions by 6 s, 5d shells by the interaction of the other Gd+3 ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [supplementary information files].

References

  1. Guo H, Li Y, Wang D, Zhang W, Yin M, Lou L (2004) Blue upconversion of cubic Gd2O3: Er produced by green laser. J Alloys Compd 376:23–27. https://doi.org/10.1016/j.jallcom.2003.12.020

    Article  CAS  Google Scholar 

  2. Lushchik A, Savikhin F, Tokbergenov I (2003) Electron and hole intraband luminescence in complex metal oxides. J Lumin 102-103:44–47. https://doi.org/10.1016/S0022-2313(02)00530-6

    Article  CAS  Google Scholar 

  3. Yang CT, Padmanabhan P, Gulyas BZ (2016) Gadolinium(iii) based nanoparticles for T1-weighted magnetic resonance imaging probes. RSC Adv 6:60945–60966. https://doi.org/10.1039/C6RA07782J

    Article  CAS  Google Scholar 

  4. Tamrakar RK, Bisen DP, Brahme N (2014) Comparison of photoluminescence properties of Gd2O3 phosphor synthesized by combustion and solid-state reaction method. J Radiat Res Appl 7:550–559. https://doi.org/10.1016/j.jrras.2014.09.005

    Article  Google Scholar 

  5. Shankar R, Srivastava RK (2018) Photoconductivity and luminescence properties of gadolinium doped zinc oxide. India Sect A Phys Sci 88:137–144. https://doi.org/10.1007/s40010-016-0328-3

    Article  CAS  Google Scholar 

  6. Aggarwal N, Kaur K, Vasishth A, Verma NK (2016) Structural, optical and magnetic properties of gadolinium-doped ZnO nanoparticles. J Mater Sci Mater Electron 27:12–13011. https://doi.org/10.1007/s10854-016-5440-2

    Article  CAS  Google Scholar 

  7. Zhang N, Chen D, Niu F, Wang S, Qin L, Huang Y (2016) Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci Rep 6:26467. https://doi.org/10.1038/srep26467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paul S, Choudhury B, Choudhury A (2014) Magnetic property study of Gd doped TiO2 nanoparticles. J Alloys Compd 601:201–206. https://doi.org/10.1016/j.jallcom.2014.02.070

    Article  CAS  Google Scholar 

  9. Thambidurai M, Muthukumarasamy N, Velauthapillai D, Lee C (2013) Quantum confinement effects in Gd-doped CdS nanoparticles prepared by chemical precipitation technique. J Mater Sci Mater Electron 24:4535–4541. https://doi.org/10.1007/s10854-013-1438-1

    Article  CAS  Google Scholar 

  10. Smyntyna V, Semenenko B, Skobeeva V, Malushin N (2014) Photoactivation of luminescence in CdS nanocrystals. Beilstein J Nanotechnol 5:355–359. https://doi.org/10.3762/bjnano.5.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaur K, Lotey GS, Verma NK (2014) Structural, magnetic, dielectric and magnetodielectric properties of Gd-doped CdS nanorods. Mater Sci Semicond Process 19:6–10. https://doi.org/10.1016/j.mssp.2013.11.021

    Article  CAS  Google Scholar 

  12. Murmu PP, Mendelsberg RJ, Kennedy J, Carder DA, Ruck BJ, Markwitz A, Reeves RJ, Malar P, Osipowicz T (2011) Structural and photoluminescence properties of Gd implanted ZnO single crystals. J Appl Phys 110:033534. https://doi.org/10.1063/1.3619852

    Article  CAS  Google Scholar 

  13. Soumya RD, Singh AK, Deshmukh L, Gupta A (2015) Structural, morphological and optical studies on chemically deposited nanocrystalline Gd-doped Cd0.5Zn0.5Se thin films. Opt quant Electron. https://doi.org/10.1007/s11082-014-0093-y

  14. Singh V, Sivaramaiah G, Singh N, Pathaka MS, Rao JL, Jirimalid HD, Natarajane V (2018) Investigation of ultraviolet emitting Gd doped Sr2MgSi2O7 phosphors. Optik 169:397–402. https://doi.org/10.1016/j.ijleo.2018.05.036

    Article  CAS  Google Scholar 

  15. Gong N, Wang H, Li S, Deng Y, Chen X, Ye L, Wei G (2014) Microwave-assisted Polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal Nanoprobe. Langmuir 30:10933–10939. https://doi.org/10.1021/la502705g

    Article  CAS  PubMed  Google Scholar 

  16. Selvaraju C, Karthick R, Veerasubam R (2019) The modification of structural, optical and antibacterial activity properties of rare earth gadolinium-doped ZnO nanoparticles prepared by co-precipitation method. J Inorg Organomet Polym Mater 29:776–782. https://doi.org/10.1007/s10904-018-1051-0

    Article  CAS  Google Scholar 

  17. Park CW, JinSeo HJ (2014) Self-activated luminescence characteristics of double perovskite ceramic Sr2ZrCeO6. Ceram Int 40:2495–2499. https://doi.org/10.1016/j.ceramint.2013.07.061

    Article  CAS  Google Scholar 

  18. Das R, Gupta K, Jana K, Nayak A, Ghosh UC (2016) Preparation, characterization and dielectric, ac conductivity with electrochemical behavior of strontium zirconate. Adv Mater Lett 7:646–651. https://doi.org/10.5185/amlett.2016.6294

    Article  CAS  Google Scholar 

  19. Mishra S, Khare A, Tiwari S, Kshatri DS (2016) Diminution in photoluminescent intensity of SrS: Ce3þ phosphor due to increased milling time. J Alloys Compd 695:1956–1965. https://doi.org/10.1016/j.jallcom.2016.11.030

    Article  CAS  Google Scholar 

  20. Zhang H, Zhao S, Wang X, Ren X, Ye J, Huang L, Xu S (2019) The enhanced photoluminescence and temperature sensing performance in rare earth doped SrMoO4 phosphors by aliovalent doping: from material design to device applications. J Mater Chem C 7:15007. https://doi.org/10.1039/c9tc04965g

    Article  CAS  Google Scholar 

  21. Chawla P, Locha SP, Singh N (2011) Synthesis and luminescence studies of CdSrS nanostructures. J Alloys Compd 509:72–75. https://doi.org/10.1016/j.jallcom.2010.08.084

    Article  CAS  Google Scholar 

  22. Firdous A, Ahmad MM (2012) Optical and High- Temperature Electrical Properties of pure and Sr-modified CdS Nanocrystals. Int J Nanosci 11:1250009. https://doi.org/10.1142/S0219581X12500093

    Article  Google Scholar 

  23. Ahmed A, Siddique NM, Alam U, Ali T, Tripathi P (2018) Improved Photocatalytic activity of Sr doped SnO2 nanoparticles: a role of oxygen vacancy. Appl Surf Sci 463:976–985. https://doi.org/10.1016/j.apsusc.2018.08.182

    Article  CAS  Google Scholar 

  24. Vanga PR, Mangalaraja RV, Ashok M (2016) Effect of co-doping on the optical, magnetic and photocatalytic properties of the Gd modified BiFeO3. J Mater Sci Mater Electron 27:5699–5706. https://doi.org/10.1007/s10854-016-4481-x

    Article  CAS  Google Scholar 

  25. Morales AE, Mora ES, Pal U (2007) Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mex de Fis 53:18 https://www.redalyc.org/articulo.oa?id=57028299004

  26. Aggarwal N, Kaur K, Vasishth A, Verma NK (2016) Structural optical and magnetic properties of gadolinium-doped ZnO nanoparticles. J Mater Sci Mater Electron 27:13006–13011. https://doi.org/10.1007/s10854-016-5440-2

    Article  CAS  Google Scholar 

  27. Sahu D, Panda NR, Acharya BS (2017) Effect of Gd doping on structure and photoluminescence properties of ZnO nanocrystals. Mater Res Express 4:114001. https://doi.org/10.1088/2053-1591/aa9597/meta

    Article  Google Scholar 

  28. Vijayaprasth D, Murugan R, Hayakawa Y, Ravi G, Lumin J (2016) Optical and magnetic studies on Gd doped ZnO nanoparticles synthesized by co-precipitation method. J Lumin 178:375–383. https://doi.org/10.1016/j.jlumin.2016.06.004

    Article  CAS  Google Scholar 

  29. Gupta SK, Kadam RM, Natarajan V, Godbole SV (2014) Nanoparticles of Sr0.995Gd0.005ZrO3-gel-combustion synthesis, characterization, fluorescence and EPR spectroscopy. Mater Sci Eng B 183:6–11. https://doi.org/10.1016/j.mseb.2013.11.024

    Article  CAS  Google Scholar 

  30. Adhikari R, Das AK, Karmakar D, Ghatak J (2010) Gd-doped SnO2 nanoparticles: structure and magnetism, J. Magn Magn 322:3631–3637. https://doi.org/10.1016/j.jmmm.2010.07.006

    Article  CAS  Google Scholar 

  31. Huang K, Yu J, Zhang L, Xu J, Yang Z, Liu C, Wang W, Kan X (2019) Structural and magnetic properties of GdeZn substituted M-type BaeSr hexaferrites by sol-gel auto-combustion method. J Alloys Compd 803:971–980. https://doi.org/10.1016/j.jallcom.2019.06.348

    Article  CAS  Google Scholar 

  32. Zhao X, Wang W, Zhang Y, Wu S, Li F, Liu JP (2014) Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo red. Int J Chem Eng 250:164–174. https://doi.org/10.1016/j.cej.2014.03.113

    Article  CAS  Google Scholar 

  33. Jadhav LD, Chourashiya MG, Subhedar KM, Tyagi AK, Patil JY (2009) Synthesis of nanocrystalline Gd doped ceria by combustion technique. J Alloys Compd 470:383–386. https://doi.org/10.1016/j.jallcom.2008.02.077

    Article  CAS  Google Scholar 

  34. Dubey V, Agrawal S, Kaur J (2014) Photoluminescence and thermoluminescence behaviour of Gd doped Y2O3 phosphor. Optik 126:1–5. https://doi.org/10.1016/j.ijleo.2014.06.175

    Article  CAS  Google Scholar 

  35. Paulraj K, Ramaswamy S, Arulanantham AMS, Valanarasu S, Shkir M, Ganesh V, AlFaify S, Kim H, Kathalingam A (2019) Investigation on nebulizer spray deposited Gd-doped PbS thin films for photo sensing applications. J Mater Sci: Mater 30:18858–18865. https://doi.org/10.1007/s10854-019-02242-8

    Article  CAS  Google Scholar 

  36. Ibrahim IM (2019) Enhancement the sensitivity of CdS nano structure by adding of rare earth materials. J Phys Conf Ser 1178:20–21. https://doi.org/10.1088/1742-6596/1178/1/012013

    Article  CAS  Google Scholar 

  37. Buscaglia MT, Maglia F, Anselmi-Tamburini U, Marré D, Pallecchi I, Ianculescu A, Canu G, Viviani M, Fabrizio M, Buscaglia V (2014) Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics. J Eur Ceram 34:307–316. https://doi.org/10.1016/j.jeurceramsoc.2013.08.009

    Article  CAS  Google Scholar 

  38. Im J, Park I, Shin D (2011) Electrochemical properties of nanostructured lanthanum strontium manganite cathode fabricated by electrostatic spray deposition. Solid State Ionics 192:448–452. https://doi.org/10.1016/j.ssi.2010.05.050

    Article  CAS  Google Scholar 

  39. Zarkov A, Stanulis A, Mikoliunaite L, Katelnikovas A, Jasulaitiene V, Ramanauskas R, Tautkus S, Kareiva A (2017) Chemical solution deposition of pure and Gd-doped ceria thin films: structural, morphological and optical properties. Ceram Int 43:4280–4287. https://doi.org/10.1016/j.ceramint.2016.12.070

    Article  CAS  Google Scholar 

  40. Anishur Rahman ATM, Vasilev K, Majewski P (2011) Ultra small Gd2O3 nanoparticles: absorption and emission properties. J Colloid Interface Sci 354:592–596. https://doi.org/10.1016/j.jcis.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  41. Wang TX, Chen WW (2008) Solid phase preparation of submicron-sized SrTiO3 crystallites from SrO2 nanoparticles and TiO2 powders. Mater Lett 62:2865–2867. https://doi.org/10.1016/j.matlet.2008.01.062

    Article  CAS  Google Scholar 

  42. Anishur Rahman ATM, Majewski P, Vasilev K (2013) Gd2O3 nanoparticles: size-dependent nuclear magnetic resonance. Contrast Media Mol Imaging 8:92–95. https://doi.org/10.1002/cmmi.1481

    Article  CAS  PubMed  Google Scholar 

  43. Rahman MM, Hussaina MM, Asiria AM (2017) Ultrasensitive and label-free detection of creatine based on CdO nanoparticles: a real sample approach. New J Chem 41:6667–6677. https://doi.org/10.1039/c6nj04101a

    Article  CAS  Google Scholar 

  44. Gowri S, Gopinath K, Arumugam A (2018) Experimental and computational assessment of mycosynthesized CdO nanoparticles towards biomedical applications. J Photochem Photobiol 180:166–174. https://doi.org/10.1016/j.jphotobiol.2018.02.009

    Article  CAS  Google Scholar 

  45. Rani S, Lal B, Saxena S, Shukla SH (2017) Photoluminescence properties of Gd:ZnO nano phosphor. J Sol-Gel Sci Technol 81:586–592. https://doi.org/10.1007/s10971-016-4218-6

    Article  CAS  Google Scholar 

  46. Vijayaprasth G, Murugan R, Hayakawa Y, Ravi G Optical and magnetic studies on Gd doped ZnO nanoparticles synthesized by co-precipitation method. J Lumin 178:375–383. https://doi.org/10.1016/j.jlumin.2016.06.004

  47. Cheemadan S, Rafiudeen A, Kumar MCS (2016) Highly transparent conducting CdO thin films by radiofrequency magnetron sputtering for optoelectronic applications. J Nanophotonics 10:033007–033007. https://doi.org/10.1117/1.JNP.10.033007

    Article  Google Scholar 

  48. Ueda N, Maeda H, Hosono H, Kawazoe H (1998) Band-gap widening of CdO thin films. J Appl Phys 84:6174–6177. https://doi.org/10.1063/1.368933

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to IIT Kanpur for SEM and XPS analysis, Ranichennamma University for XRD and elemental compositional analysis, KUD, Dharwar for SEM EDX analysis.

Funding

Authors do not have received any funding from any institutions or agencies.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Vinayak Adimule and Dr. Debdas Bhowmik contributed synthesis, manuscript preparation and communication. Dr. Yallur BC involved in characterization of the samples, Mr. Santosh S Nandi acknowledged for SEM, EDX and XRD analysis and partly by manuscript preparation. Mr. Adarsha H.J. Gowda carried out PL experimentation and interpretation of the results.

Corresponding authors

Correspondence to Vinayak Adimule or Debdas Bhowmik.

Ethics declarations

Conflict of Interests

All the authors declare that they do not have any competing interest.

Code Availability

“Not Applicable”.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimule, V., Nandi, S.S., Yallur, B.C. et al. Optical, Structural and Photoluminescence Properties of Gd x SrO: CdO Nanostructures Synthesized by Co Precipitation Method. J Fluoresc 31, 487–499 (2021). https://doi.org/10.1007/s10895-021-02683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02683-7

Keywords

Navigation