Skip to main content

Advertisement

Log in

Investigation of Gd2O3: Er3+/Yb3+ Upconversion Nanoparticles (UCNPs) as a Multi‐model Contrast Agent for Functional Optical Coherence Tomography (fOCT)

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Currently, upconversion nanoparticles (UCNPs) implanted as a contrast agent for optical coherence tomography (OCT) system due to its biocompatibility, anti-stock emission, narrow emission bandwidth non-photobleaching effects etc., but it was not used as multi model imaging probe. We synthesized multimodal imaging probe having upconversion property along with paramagnetic property and used as dual contrast agents for Photothermal Optical Coherence Tomography (PTOCT) and Magnetomotive Optical Coherence Tomography (MMOCT). The synthesized Gd2O3:Er3+/Yb3+ UCNPs shows the bright yellow upconversion emission, biocompatibility with hydrophilic property. A custom built SSOCT setup modified for PTOCT and MMOCT imaging along with custom MATLAB algorithm for signal extraction. A dynamic study was performed with synthesized UCNPs as an imaging probe and functional OCT system for targeted imaging. This shows the utility of the Gd2O3:Er3+/Yb3+ UCNPs as molecular probe for targeted imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115(1):395–465. https://doi.org/10.1021/cr400478f

    Article  CAS  PubMed  Google Scholar 

  2. Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics express 11(18):2183–2189. https://doi.org/10.1364/OE.11.002183

    Article  PubMed  Google Scholar 

  3. Poddar R, Zawadzki RJ, Cortés DE, Mannis MJ, Werner JS (2015) In vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1 µm swept source phase-variance optical coherence angiography. J Opt 17(6):065301. https://doi.org/10.1088/2040-8978/17/6/065301

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shi Z, Neoh KG, Kang ET, Shuter B, Wang SC (2010) Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling. Contrast Media Mol Imaging 5(2):105–111. https://doi.org/10.1002/cmmi.373

    Article  CAS  PubMed  Google Scholar 

  5. Dhar D, Mohan M, Poddar R (2019) Assessment of Gd2O3 nanoparticles as exogenous imaging contrast agent for swept source optical coherence tomography. Laser Phys 30(1):015601. https://doi.org/10.1088/1555-6611/ab5216

    Article  CAS  Google Scholar 

  6. Xu X, Wang Z, Lei P, Yu Y, Yao S, Song S, … Zhang H (2015) α-NaYb (Mn) F4: Er3+/Tm3+@ NaYF4 UCNPs as “band-shape” luminescent nanothermometers over a wide temperature range. ACS Appl Mater Interfaces 7(37):20813–20819. https://doi.org/10.1021/acsami.5b05876

    Article  CAS  PubMed  Google Scholar 

  7. Cheng L, Wang C, Liu Z (2013) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5(1):23–37. https://doi.org/10.1039/C2NR32311G

    Article  CAS  PubMed  Google Scholar 

  8. Yu W, Xu W, Song H, Zhang S (2014) Temperature-dependent upconversion luminescence and dynamics of NaYF 4: Yb 3+/Er 3 + nanocrystals: influence of particle size and crystalline phase. Dalton Trans 43(16):6139–6147. https://doi.org/10.1039/C3DT53562B

    Article  CAS  PubMed  Google Scholar 

  9. Chen C, Li C, Shi Z (2016) Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication. Adv Sci 3(10):1600029. https://doi.org/10.1002/advs.201600029

    Article  CAS  Google Scholar 

  10. Chen J, Zhao JX (2012) Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors 12(3):2414–2435. https://doi.org/10.3390/s120302414

    Article  CAS  PubMed  Google Scholar 

  11. Skala MC, Crow MJ, Wax A, Izatt JA (2008) Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Lett 8(10):3461–3467. https://doi.org/10.1021/nl802351p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tucker-Schwartz JM, Beavers KR, Sit WW, Shah AT, Duvall CL, Skala MC (2014) In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography. Biomed Opt Express 5(6):1731–1743. https://doi.org/10.1364/BOE.5.001731

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tucker-Schwartz JM, Lapierre-Landry M, Patil CA, Skala MC (2015) Photothermal optical lock-in optical coherence tomography for in vivo imaging. Biomed Opt Express 6(6):2268–2282. https://doi.org/10.1364/BOE.6.002268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang P, Liu S, Chen J, Yuan Z, Xie B, Zhou J, Tang Z (2017) Cross-correlation photothermal optical coherence tomography with high effective resolution. Opt Lett 42(23):4974–4977. https://doi.org/10.1364/OL.42.004974

    Article  PubMed  Google Scholar 

  15. Li W, Song W, Chen B, Matcher SJ (2019) Superparamagnetic graphene quantum dot as a dual-modality contrast agent for confocal fluorescence microscopy and magnetomotive optical coherence tomography. J Biophotonics 12(2):e201800219. https://doi.org/10.1002/jbio.201800219

    Article  CAS  PubMed  Google Scholar 

  16. Wang HW, Huang CC, Li ML (2019) Improved backward mode pulsed magnetomotive ultrasound via pre-magnetization of superparamagnetic iron oxide nanoparticles. In (2019) IEEE International Ultrasonics Symposium (IUS), 2019, October. IEEE, New York,  pp 2387–2389. https://doi.org/10.1109/ULTSYM.2019.8925878

  17. Li G, Wang W, Song S, Sun Y, Liu J, Chen K, … Wang W (2019) Anticancer effects and cell death pathways in ultralow-power 980 nm laser-triggered photodynamic therapy by Gd2O3: Yb, Tm Nanoparticles. J Biomed Nanotechnol 15(3):462–476. 10.1166/jbn.2019.2702

  18. Tse WH, Chen L, McCurdy CM, Tarapacki CM, Chronik BA, Zhang J (2019) Development of biocompatible NaGdF4: Er3+, Yb3 + upconversion nanoparticles used as contrast agents for bio-imaging. Can J Chem Eng 97(10):2678–2684. https://doi.org/10.1002/cjce.23510

    Article  CAS  Google Scholar 

  19. Mishra T, Mohan M, Chakravarty M, Poddar R (2019) Zinc oxide nanoparticles (ZnONPs) as contrast agent for imaging of animal tissue using swept source optical coherence tomography (SSOCT). Optik 176:302–308. https://doi.org/10.1016/j.ijleo.2018.09.111

    Article  CAS  Google Scholar 

  20. Mohan M, Maurya SK, Kumar K, Poddar R (2020) In vitro imaging of animal tissue with upconversion nanoparticles (UCNPs) as a molecular probing agent using Swept Source Optical Coherence Tomography (SSOCT). J Med Biol Eng 2020:1–13. https://doi.org/10.1007/s40846-020-00511-0

  21. Oldenburg AL, Crecea V, Rinne SA, Boppart SA (2008) Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Opt Express 16(15):11525–11539. https://doi.org/10.1364/OE.16.011525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oldenburg AL, Gunther JR, Boppart SA (2005) Imaging magnetically labeled cells with magnetomotive optical coherence tomography. Opt Lett 30(7):747–749. https://doi.org/10.1364/OL.30.000747

    Article  PubMed  Google Scholar 

  23. Tamrakar RK, Bisen DP, Upadhyay K, Sahu IP (2015) Comparative study and role of Er3 + and Yb3 + concentrations on upconversion process of Gd2O3: Er3 + Yb3 + phosphors prepared by solid-state reaction and combustion method. J Phys Chem C 119(36):21072–21086. https://doi.org/10.1021/acs.jpcc.5b06443

    Article  CAS  Google Scholar 

  24. Wilhelm S, Kaiser M, Würth C, Heiland J, Carrillo-Carrion C, Muhr V, … Hirsch T (2015) Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale 7(4):1403–1410. 10.1039/C4NR05954A

  25. Sun JY, Cao C, Du HY (2011) Yellow-orange upconversion luminescence in NaYF4: Er3+, Yb3 + phosphor synthesized by microwave combustion method. Adv Mater Res  295:551–554. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.295-297.551

  26. Arppe R, Hyppänen I, Perälä N, Peltomaa R, Kaiser M, Würth C, … Soukka T (2015) Quenching of the upconversion luminescence of NaYF4: Yb3+, Er3 + and NaYF4: Yb3+,Tm 3 + nanophosphors by water: the role of the sensitizer Yb3 + in non-radiative relaxation. Nanoscale 7(27):11746–11757. 10.1039/C5NR02100F

  27. Paul R, Sen P, Das I (2016) Effect of morphology on the magnetic properties of Gd2O3 nanotubes. Phys E 80:149–154. https://doi.org/10.1016/j.physe.2016.01.038

    Article  CAS  Google Scholar 

  28. Singh SK, Kumar K, Srivastava MK, Rai DK, Rai SB (2010) Magnetic-field-induced optical bistability in multifunctional Gd 2 O 3: Er 3+∕ Yb 3 + upconversion nanophosphor. Opt Lett 35(10):1575–1577. https://doi.org/10.1364/OL.35.001575

    Article  CAS  PubMed  Google Scholar 

  29. Kumar A, Couto MH, Tiwari SP, Kumar K, da Silva E (2018) Effect of pH of precursor on up/downconversion and cathodoluminescence of Gd2O3: Ho3+/Yb3 + phosphor and magneto-optic studies. ChemistrySelect 3(38):10566–10573. https://doi.org/10.1002/slct.201801556

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by DST-SERB (EMR/2015/001757) Govt. of India and Indian Council of Medical Research (ICMR) via grant no. ICMR-EMR (5/2021 (Bio)/2014-ITR-1).

Author information

Authors and Affiliations

Authors

Contributions

MM and RP developed the theoretical formalism, performed the experiments and analytic calculations. Both MM and RP authors contributed to the final version of the manuscript. RP supervised the project.

Corresponding author

Correspondence to Raju Poddar.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors have no conflict of interest.

Ethics Approval

Cell Lines were used namely, Human Cervical Cancer (HeLa: RRID:CVCL_1D61) and Human Embryonic Kidney 293 (HEK293: RRID:CVCL_S025). 

Consent to Participate

Not applicable.

Consent for Publication

Not applicable. 

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, M., Poddar, R. Investigation of Gd2O3: Er3+/Yb3+ Upconversion Nanoparticles (UCNPs) as a Multi‐model Contrast Agent for Functional Optical Coherence Tomography (fOCT). J Fluoresc 31, 541–550 (2021). https://doi.org/10.1007/s10895-021-02681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02681-9

Keywords

Navigation