Skip to main content
Log in

A Versatile Aggregation‐induced Emission Fluorescent Probe for Visible Detection of pH

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

By tactfully structuring a luminescent molecule as an accurate pH probe with aggregation-induced emission (AIE) feature, it is significant to overcome aggregation-caused quenching of emitted light in practice. Herein, we present a simple AIE-active fluorescence probe for pH detection on the basis of intramolecular charge transfer (ICT) with wide response range and high sensitivity reaction. The donor-acceptor-donor (D-A-D) style probe utilized a conjugated structural hybrid of the electron-withdrawing nitrile group and electron-donating hydroxyl as well as dimethylamino groups for fluorescent platform. The AIE-active probe possesses good fluorescence under water fraction up to 90% in mixed MeOH/water system. Furthermore, it can be used in profiling and visualization of pH detection in MeOH/water system at fw = 90% under UV 365 nm lamp. What’s more, the probe can be employed to be a broad range test paper of pH detection, paving the way for low-cost practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data and materials from this manuscript will be made available on request.

References

  1. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740–1741. https://doi.org/10.1039/B105159H

    Article  Google Scholar 

  2. Fan YQ, Liu J, Chen YY, Guan XW, Wang J, Yao H, Zhang YM, Wei TB, Lin Q (2018) An easy-to-make strong white AIE supramolecular polymer as a colour tunable photoluminescence material. J Mater Chem C 6:13331–13335. https://doi.org/10.1039/C8TC04540B

    Article  CAS  Google Scholar 

  3. Chen C, Li RH, Zhu BS, Wang KH, Yao JS, Yin YC, Yao MM, Yao HB, Yu SH (2018) Highly luminescent inks: Aggregation-induced emission of copper–iodine hybrid clusters. Angew Chem Int Ed 57:7107–7110. https://doi.org/10.1002/anie.201802932

    Article  CAS  Google Scholar 

  4. Song F, Xu Z, Zhang Q, Zhao Z, Zhang H, Zhao W, Qiu Z, Qi C, Zhang H, Sung HHY, Williams ID, Lam JWY, Zhao Z, Qin A, Ma D, Tang BZ (2018) Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence. Adv Funct Mater 28:1800051. https://doi.org/10.1002/adfm.201800051

    Article  CAS  Google Scholar 

  5. Zhan Y, Yang Z, Tan J, Qiu Z, Mao Y, He J, Yang Q, Ji S, Cai N, Huo Y (2020) Synthesis, aggregation-induced emission (AIE) and electroluminescence of carbazole-benzoyl substituted tetraphenylethylene derivatives. Dyes Pigments 173:107898. https://doi.org/10.1016/j.dyepig.2019.107898

    Article  CAS  Google Scholar 

  6. Wan Q, Tong J, Zhang B, Li Y, Wang Z, Tang BZ (2020) Exploration of high efficiency AIE-active deep/near-infrared red emitters in OLEDs with high-radiance. Adv Optical Mater 8:1901520. https://doi.org/10.1002/adom.201901520

    Article  CAS  Google Scholar 

  7. Liu B, Nie H, Zhou X, Hu S, Luo D, Gao D, Zou J, Xu M, Wang L, Zhao Z, Qin A, Peng J, Ning H, Cao Y, Tang BZ (2016) Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: A novel concept to achieve high-performance hybrid white organic light-emitting diodes. Adv Funct Mater 26:776–783. https://doi.org/10.1002/adfm.201503368

    Article  CAS  Google Scholar 

  8. Yu M, Huang R, Guo J, Zhao Z, Tang BZ (2020) Promising applications of aggregation-induced emission luminogens in organic optoelectronic devices. PhotoniX1 11:598. https://doi.org/10.1186/s43074-020-00012-y

    Article  Google Scholar 

  9. Wang T, Su X, Zhang X, Nie X, Huang L, Zhang X, Sun X, Luo Y, Zhang G (2019) Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes. Adv Mater 31:1904273. https://doi.org/10.1002/adma.201904273

    Article  CAS  Google Scholar 

  10. Li Q, Yang Z, Ren Z, Yan S (2016) Polysiloxane-modified tetraphenylethene: Synthesis, AIE properties, and sensor for detecting explosives. Macromol Rapid Commun 37:1772–1779. https://doi.org/10.1002/marc.201600378

    Article  CAS  PubMed  Google Scholar 

  11. Hu Q, Huang Q, Liang K, Wang Y, Mao Y, Yin Q, Wang H (2020) An AIE + TICT activated colorimetric and ratiometric fluorescent sensor for portable, rapid, and selective detection of phosgene. Dyes Pigments 176:108229. https://doi.org/10.1016/j.dyepig.2020.108229

    Article  CAS  Google Scholar 

  12. Zhao R, Zhang M, Liu Y, Zhang X, Duan Y, Han T (2020) Fabricating D-A type AIE luminogen into film sensor for turn-on detection of methanol vapour. Sensors Actuators B Chem 319:128323. https://doi.org/10.1016/j.snb.2020.128323

    Article  CAS  Google Scholar 

  13. Ji X, Li Z, Liu X, Peng HQ, Song F, Qi J, Lam JWY, Long L, Sessler JL, Tang BZ (2019) A functioning macroscopic “Rubik’s Cube” assembled via controllable dynamic covalent interactions. Adv Mater 31:1902365. https://doi.org/10.1002/adma.201902365

    Article  CAS  Google Scholar 

  14. Zhu M, Chen Y, Zhang X, Chen M, Guo H, Yang F (2018) Perylene bisimide with diphenylacrylonitrile on side-chain: strongly fluorescent liquid crystal with large pseudo Stokes shift based on AIE and FRET effect. Soft Matter 14:6737–6744. https://doi.org/10.1039/C8SM01183D

    Article  CAS  PubMed  Google Scholar 

  15. Jiang S, Qiu J, Lin L, Guo H, Yang F (2019) Circularly polarized luminescence based on columnar self-assembly of tetraphenylethylene with multiple cholesterol units. Dyes Pigments 163:363–370. https://doi.org/10.1016/j.dyepig.2018.12.021

    Article  CAS  Google Scholar 

  16. Zhu M, Zhuo Y, Cai K, Guo H, Yang F (2017) Novel fluorescent perylene liquid crystal with diphenylacrylonitrile groups: Observation of a large pseudo stokes shift based on AIE and FRET effects. Dyes Pigments 147:343–349. https://doi.org/10.1016/j.dyepig.2017.08.027

    Article  CAS  Google Scholar 

  17. Qiu J, Jiang S, Guo H, Yang F (2018) An AIE and FRET-based BODIPY sensor with large Stoke shift: Novel pH probe exhibiting application in CO32– detection and living cell imaging. Dyes Pigments 157:351–358. https://doi.org/10.1016/j.dyepig.2018.05.013

    Article  CAS  Google Scholar 

  18. Qi J, Sun C, Li D, Zhang H, Yu W, Zebibula A, Lam JWY, Xi W, Zhu L, Cai F, Wei P, Zhu C, Kwok RTK, Streich LL, Prevedel R, Qian J, Tang BZ (2018) Aggregation-induced emission luminogen with near-infrared-II excitation and near-infrared-I emission for ultradeep intravital two-photon microscopy. ACS Nano 12:7936–7945. https://doi.org/10.1021/acsnano.8b02452

    Article  CAS  PubMed  Google Scholar 

  19. Niu G, Zhang R, Kwong JPC, Lam JWY, Chen C, Wang J, Chen Y, Feng X, Kwok RTK, Sung HHY, Williams ID, Elsegood MRJ, Qu J, Ma C, Wong KS, Yu X, Tang BZ (2018) Specific two-photon imaging of live cellular and deep-tissue lipid droplets by lipophilic AIEgens at ultralow concentration. Chem Mater 30:4778–4787. https://doi.org/10.1021/acs.chemmater.8b01943

    Article  CAS  Google Scholar 

  20. Lim NY, Ahn J, Won M, Choi W, Kim JS, Jung JH (2019) Novel cyanostilbene-based fluorescent chemoprobe for hydroxyl radicals and its two-photon bioimaging in living cells. ACS Appl Bio Mater 2:936–942. https://doi.org/10.1021/acsabm.8b00796

    Article  CAS  Google Scholar 

  21. Zhou C, Xu W, Zhang P et al (2019) Engineering sensor arrays using aggregation-induced emission luminogens for pathogen identification. Adv Funct Mater 29:1805986. https://doi.org/10.1002/adfm.201805986

    Article  CAS  Google Scholar 

  22. Hu F, Xu S, Liu B (2018) Photosensitizers with aggregation-induced emission: Materials and biomedical applications. Adv Mater 30:1801350. https://doi.org/10.1002/adma.201801350

    Article  CAS  Google Scholar 

  23. Wu W, Mao D, Xu S et al (2019) Precise molecular engineering of photosensitizers with aggregation-induced emission over 800 nm for photodynamic therapy. Adv Funct Mater 29:1901791. https://doi.org/10.1002/adfm.201901791

    Article  CAS  Google Scholar 

  24. Dong Z, Bi Y, Cui H et al (2019) AIE supramolecular assembly with FRET effect for visualizing drug delivery. ACS Appl Mater Interfaces 11:23840–23847. https://doi.org/10.1021/acsami.9b04938

    Article  CAS  PubMed  Google Scholar 

  25. Li Q, Li Y, Min T et al (2020) Time-dependent photodynamic therapy for multiple targets: A highly efficient AIE‐active photosensitizer for selective bacterial elimination and cancer cell ablation. Angew Chem Int Ed 59:9470–9477. https://doi.org/10.1002/anie.201909706

    Article  CAS  Google Scholar 

  26. Huang G, Jiang Y, Yang S, Li BS, Tang BZ (2019) Multistimuli response and polymorphism of a novel tetraphenylethylene derivative. Adv Funct Mater 29:1900516. https://doi.org/10.1002/adfm.201900516

    Article  CAS  Google Scholar 

  27. Li C, Xiong K, Chen Y, Fan C, Wang YL, Ye H, Zhu MQ (2020) Visible-light-driven photoswitching of aggregated-induced emission-active diarylethenes for super-resolution imaging. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c03122

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang H, Zeng J, Luo W et al (2019) Synergistic tuning of the optical and electrical performance of AIEgens with a hybridized local and charge-transfer excited state. J Mater Chem C 7:6359–6368. https://doi.org/10.1039/C9TC01453E

    Article  CAS  Google Scholar 

  29. Zhao F, Chen Z, Fan C, Liu G, Pu S (2019) Aggregation-induced emission (AIE)-active highly emissive novel carbazole-based dyes with various solid-state fluorescence and reversible mechanofluorochromism characteristics. Dyes Pigments 164:390–397. https://doi.org/10.1016/j.dyepig.2019.01.057

    Article  CAS  Google Scholar 

  30. Wang X, Ding G, Duan Y et al (2020) A novel triphenylamine-based bis-Schiff bases fluorophores with AIE-Activity as the hydrazine fluorescence turn-off probes and cell imaging in live cells. Talanta 217:121029. https://doi.org/10.1016/j.talanta.2020.121029

    Article  CAS  PubMed  Google Scholar 

  31. Yuan Y, Yin P, Wang T et al (2020) Synthesis of triphenylamine (TPA) dimers and applications in cell imaging. Dyes Pigments 174:108009. https://doi.org/10.1016/j.dyepig.2019.108009

    Article  CAS  Google Scholar 

  32. Lin HT, Huang CL, Liou GS (2019) Design, synthesis, and electrofluorochromism of new triphenylamine derivatives with AIE-active pendent groups. ACS Appl Mater Interfaces 11:11684–11690. https://doi.org/10.1021/acsami.9b00659

    Article  CAS  PubMed  Google Scholar 

  33. Xu F, Wang H, Du X et al (2016) Structure, property and mechanism study of fluorenone-based AIE dyes. Dyes Pigments 129:121–128. https://doi.org/10.1016/j.dyepig.2016.02.023

    Article  CAS  Google Scholar 

  34. Yan X, Zhu P, Li Y, Yuan S, Lan H, Xiao S (2019) Aggregation-induced emission (AIE)-active phenanthrenequinone hydrazone-based dyes with reversible mechanofluochromism. Mater Today Commun 20:100565. https://doi.org/10.1016/j.mtcomm.2019.100565

    Article  CAS  Google Scholar 

  35. Zhou J, Xu S, Yu Z, Ye X, Dong X, Zhao W (2019) Two-channel responsive fluorescent probe of meso carboxylate of BODIPY with AIE characteristics for fast detection of palladium. Dyes Pigments 170:107656. https://doi.org/10.1016/j.dyepig.2019.107656

    Article  CAS  Google Scholar 

  36. Chen B, Zeng J, Xiong Y, Nie H, Luo W, Zhao Z, Tang BZ (2018) Synthesis, aggregation-induced emission and electroluminescence of new luminogens based on thieno[3,2-b]thiophene S,S-dioxide. Dyes Pigments 159:275–282. https://doi.org/10.1016/j.dyepig.2018.04.069

    Article  CAS  Google Scholar 

  37. Liu C, Zhang K, Sun Q, Li W (2020) Bile acid-terpyridine conjugates: Steroidal skeleton controlled AIE effect and metal-tunable fluorescence and supramolecular assembly properties. Tetrahedron 15:131283. https://doi.org/10.1016/j.tet.2020.131283

    Article  CAS  Google Scholar 

  38. Zhang R, Gao M, Bai S, Liu B (2015) A fluorescent light-up platform with “AIE + ESIPT” characteristics for multi-target detection both in solution and on paper strip. J Mater Chem B 3:1590–1596. https://doi.org/10.1039/C4TB01937G

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Wang S, Wu X et al (2018) Triazatruxene-based small molecules with thermally activated delayed fluorescence, aggregation-induced emission and mechanochromic luminescence properties for solution-processable nondoped OLEDs. J Mater Chem C 6:12503–12508. https://doi.org/10.1039/C8TC04721A

    Article  CAS  Google Scholar 

  40. Duan P, Yanai N, Kurashige Y, Kimizuka N (2015) Aggregation-induced photon upconversion through control of the triplet energy landscapes of the solution and solid states. Angew Chem Int Ed 54:7544–7549. https://doi.org/10.1002/ange.201501449

    Article  CAS  Google Scholar 

  41. Wang F, Li X, Wang S et al (2016) New π-conjugated cyanostilbene derivatives: Synthesis, characterization and aggregation-induced emission. Chin Chem Lett 27:1592–1596. https://doi.org/10.1016/j.cclet.2016.04.020

    Article  CAS  Google Scholar 

  42. Vasu AK, Radhakrishna M, Kanvah S (2017) Self-assembly tuning of α-cyanostilbene fluorogens: Aggregates to nanostructures. J Phys Chem C 121:22478–22486. https://doi.org/10.1021/acs.jpcc.7b06225

    Article  CAS  Google Scholar 

  43. Hang C, Wu HW, Zhu LL (2016) π-Conjugated cyanostilbene-based optoelectric functional materials. Chin Chem Lett 27:1155–1165. https://doi.org/10.1016/j.cclet.2016.04.003

    Article  CAS  Google Scholar 

  44. Dhoun S, Kaur S, Kaur P, Singh K (2017) A cyanostilbene-boronate based AIEE probe for hydrogen peroxide—Application in chemical processing. Sensors Actuators B Chem 245:95–103. https://doi.org/10.1016/j.snb.2017.01.143

    Article  CAS  Google Scholar 

  45. Kumari B, Paramasivam M, Dutta A, Kanvah S (2018) Emission and color tuning of cyanostilbenes and white light emission. ACS Omega 3:17376-17385. https://doi.org/10.1021/acsomega.8b02775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paramasivam M, Kanvah S (2016) Rational tuning of AIEE active coumarin based α-cyanostilbenes toward far-red/NIR region using different π-spacer and acceptor units. J Phys Chem C 120:10757–10769. https://doi.org/10.1021/acs.jpcc.6b01334

    Article  CAS  Google Scholar 

  47. Yoon JH, Kim SM, Park HJ, Kim YK (2020) Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids. Biosens Bioelectron 150:111946. https://doi.org/10.1016/j.bios.2019.111946

    Article  CAS  PubMed  Google Scholar 

  48. Gong J, Tanner MG, Venkateswaran S, Stone JM (2020) A hydrogel-based optical fibre fluorescent pH sensor for observing lung tumor tissue acidity. Chin Chem Lett 1134:136–143. https://doi.org/10.1016/j.aca.2020.07.063

    Article  CAS  Google Scholar 

  49. Vivaldi F, Santalucia D, Poma N, Bonini A (2020) A voltammetric pH sensor for food and biological matrices. Sensors Actuators B Chem 322:128650. https://doi.org/10.1016/j.snb.2020.128650

    Article  CAS  Google Scholar 

  50. Mazzaracchio V, Fiore L, Nappi S, Marrocco G (2021) Medium-distance affordable, flexible and wireless epidermal sensor for pH monitoring in sweat. Talanta 222:121502. https://doi.org/10.1016/j.talanta.2020.121502

    Article  CAS  PubMed  Google Scholar 

  51. Tariq A, Baydoun J, Remy C, Ghasemi R (2021) Fluorescent molecular probe based optical fiber sensor dedicated to pH measurement of concrete. Sensors Actuators B Chem 327:128906. https://doi.org/10.1016/j.snb.2020.128906

    Article  CAS  Google Scholar 

  52. More KN, Mun SK, Kang J, Kim JJ (2021) Molecular design of fluorescent pH sensors based on reduced rhodol by structure-pKa relationship for imaging of lysosome. Dyes Pigments 184:108785. https://doi.org/10.1016/j.dyepig.2020.108785

    Article  CAS  Google Scholar 

  53. Mishra VR, Ghanavatkar CW, Sekar N (2019) ESIPT clubbed azo dyes as deep red emitting fluorescent molecular rotors: Photophysical properties, pH study, viscosity sensitivity, and DFT studies. J Lumin 215:116689. https://doi.org/10.1016/j.jlumin.2019.116689

    Article  CAS  Google Scholar 

  54. Wang X, Wang H, Niu Y, Wang Y (2020) A facile AIE fluorescent probe for broad range of pH detection. Spectrochim Acta Part A Mol Biomol Spectrosc 226:117650. https://doi.org/10.1016/j.saa.2019.117650

    Article  CAS  Google Scholar 

  55. Li J, Liu Y, Li H, Shi W (2018) pH-Sensitive micelles with mitochondria-targeted and aggregation-induced emission characterization: synthesis, cytotoxicity and biological applications. Biomater Sci 6:2998–3008. https://doi.org/10.1039/C8BM00889B

    Article  CAS  PubMed  Google Scholar 

  56. Wang Z, Ye J, Li J, Bai Y (2015) A novel triple-mode fluorescent pH probe from monomer emission to aggregation-induced emission. RSC Adv 5:8912–8917. https://doi.org/10.1039/C4RA15240A

    Article  CAS  Google Scholar 

  57. Ma X, Cheng J, Liu J, Zhou X (2015) Ratiometric fluorescent pH probes based on aggregation-induced emission-active salicylaldehyde azines. New J Chem 39:492–500. https://doi.org/10.1039/C4NJ01908C

    Article  CAS  Google Scholar 

  58. Zhang M, Yang W, Gong T, Zhou W (2017) Tunable AIEE fluorescence constructed from triphenylamine luminogen containing quinoline ---application to reversible and tunable pH sensor. Phys Chem Chem Phys 19:21672–21682. https://doi.org/10.1039/C7CP03234J

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Z, Gu F, Peng L, Hu Y (2015) Spectroscopic analysis and in vitro imaging applications of a pH responsive AIE sensor with a two-input inhibit function. Chem Commun 51:12060–12063. https://doi.org/10.1039/C5CC03788C

    Article  CAS  Google Scholar 

  60. Feng Q, Li Y, Wang L, Li C (2016) Multiple-color aggregation-induced emission (AIE) molecules as chemodosimeters for pH sensing. Chem Commun 52:3123–3126. https://doi.org/10.1039/C5CC10423H

    Article  CAS  Google Scholar 

  61. Mazi W, Adhikari R, Zhang Y, Xia S (2019) Fluorescent probes with high pKa values based on traditional, near-infrared rhodamine, and hemicyanine fluorophores for sensitive detection of lysosomal pH variations. Methods 168:40–50. https://doi.org/10.1016/j.ymeth.2019.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Undergraduate Innovation Program in Neijiang Normal University (No. X2020059).

Funding

The study was supported by the Undergraduate Innovation Program in Neijiang Normal University (No. X2020059).

Author information

Authors and Affiliations

Authors

Contributions

M. C.: experiments and data treatment; Y. R.: synthesis of the pH probe; H. L.: structural characterization of the pH probe; Q. J.: calculation of density functional theory (DFT); J. Z.: some measurements of fluorescence; M. Z.: study design and writing of the manuscript.

Corresponding author

Correspondence to Mingguang Zhu.

Ethics declarations

Competing Interests

No potential conflict of interest was reported by the authors.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Ren, Y., Liu, H. et al. A Versatile Aggregation‐induced Emission Fluorescent Probe for Visible Detection of pH. J Fluoresc 31, 475–485 (2021). https://doi.org/10.1007/s10895-020-02669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02669-x

Keywords

Navigation