Skip to main content
Log in

Designed Synthesis of Fluorescence ‘Turn-on’ Dual Sensor for Selective Detection of Al3+ and Zn2+ in Water

  • FLUORESCENCE NEWS ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

1-(Pyridin-2-yl-hydrazonomethyl)-naphthalen-2-ol (PNOH) is a naphthalene-based fluorescence dual chemo-sensor for Al3+ and Zn2+. The probe (PNOH) is spectroscopically characterised and the chemo-sensing mechanism has been demonstrated through 1H NMR, absorption and both steady state and time resolved fluorescence study. The ‘turn-on’ luminescence property of PNOH is used for the selective detection of trace amount of Al3+and Zn2+via chelation enhanced fluorescence (CHEF) through complex formation. The 1:1 stoichiometry of each sensor-metal complex is observed from Job’s plot based on UV-Vis titration. Most promising advantage of the probe (PNOH) is its application in the one-pot detection of Al3+ (λem- 460 nm) and Zn2+em- 510 nm) exciting at same wavelength (λex- 420 nm) while high intense emission appears at two different wavelengths. Limit of detection (LOD) of PNOH towards Al3+ & Zn2+ are found to be 60 nM & 365 nM respectively. Real water sample analysis has also been demonstrated by using the probe PNOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig.2
Fig. 3
Fig. 4
Scheme 3
Fig.5
Fig. 6
Fig. 7
Fig. 8

Data Availability

Raw data and materials are available on request to the author.

References

  1. Callan JF, De Silva AP, Magro DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  2. Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P, Kumar S (2012) Chemodosimeters: an approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord Chem Rev 256:1992–2028

    Article  CAS  Google Scholar 

  3. Morassaei MS, Ajabshir SZ, Niasari MS (2017) Nd2Sn2O7 nanostructures: new facile Pechini preparation, characterization, and investigation of their photocatalytic degradation of methyl orange dye. Adv Powder Technol 28:697–705

    Article  CAS  Google Scholar 

  4. Morassaei MS, Ajabshir SZ, Niasari MS (2016) Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J Mater Sci Mater Electron 27:11698–11706

    Article  CAS  Google Scholar 

  5. Ajabshir SZ, Salehi Z, Niasari MS (2018) Green synthesis and characterization of Dy2Ce2O7 ceramic nanostructures with good photocatalytic properties under visible light for removal of organic dyes in water. J Clean Prod 192:678–687

    Article  Google Scholar 

  6. Ajabshir SZ, Salehi Z, Niasari MS (2016) Preparation, characterization and photocatalytic properties of Pr2Ce2O7 nanostructures via a facile way. RSC Adv 6:26895–26901

    Google Scholar 

  7. Salehi Z, Ajabshir SZ, Niasari MS (2016) Novel synthesis of Dy2Ce2O7 nanostructures via a facile combustion route. RSC Adv 6:107785–107792

    Article  Google Scholar 

  8. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Demchenko AP (2009) Introduction to fluorescence sensing. Anal Bioanal Chem 395:1195–1196

    Article  Google Scholar 

  10. Esteves CIC, Batista RMF, Raposo MMM, Costa SPG (2016) Novel functionalised imidazo-benzocrown ethers bearing a thiophene spacer as fluorimetric chemosensors for metal ion detection. Dyes Pigments 135:134–142

    Article  CAS  Google Scholar 

  11. Derazkola SM, Ajabshir SZ, Niasari MS (2017) Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Adv Powder Technol 28:747–754

    Article  Google Scholar 

  12. Ajabshir SZ, Salehi Z, Niasari MS (2018) Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants. J Alloys Compd 763:314–321

    Article  Google Scholar 

  13. Razi F, Ajabshir SZ, Niasari MS (2017) Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J Mol Liq 225:645–651

    Article  CAS  Google Scholar 

  14. Roy A, Shee U, Mukherjee A, Mandal SK, Roy P (2019) Rhodamine-based dual Chemosensor for Al3+ and Zn2+ ions with distinctly separated excitation and emission wavelengths. ACS Omega 4:6864–6875

    Article  CAS  Google Scholar 

  15. Hazra A, Roy A, Mukherjee A, Maiti GP, Roy P (2018) Remarkable difference in Al3+ and Zn2+ sensing properties of quinoline based isomers. Dalton Trans 47:13972–13989

    Article  CAS  PubMed  Google Scholar 

  16. Santhi S, Amala S, Basheer SM (2018) Experimental and computational investigation of highly selective dual-channel chemosensor for Al(III) and Zn(II) ions: construction of logic gates. J Chem Sci 130:153

    Article  Google Scholar 

  17. Momot O, Synzynys B (2005) Toxic Aluminium and heavy metals in groundwater of middle Russia: health risk assessment. Int J Environ Res Public Health 2:214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  19. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Godbold DL, Fritz E, Huttermann A (1988) Aluminum toxicity and forest decline. Proc Natl Acad Sci U S A 85:3888–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  CAS  Google Scholar 

  22. Krejpcio Z, Wojciak RW (2002) The influence of Al3+ ions on pepsin and trypsin activity in vitro. Pol J Environ Stud 11:251–254

    CAS  Google Scholar 

  23. Ding W-H, Cao W, Zheng X-J, Fang D-C, Wong W-T, Jin L-P (2013) A highly selective fluorescent chemosensor for AlIII ion and fluorescent species formed in the solution. Inorg Chem 52:7320–7322

    Article  CAS  PubMed  Google Scholar 

  24. Sorenson JRJ, Campbell IR, Tepper LB, Lingg RD (1974) Aluminum in the environment and human health. Environ Health Perspect 8:3–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gupta VK, Jain AK, Maheshwari G (2007) Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta 72:1469–1473

    Article  CAS  PubMed  Google Scholar 

  26. Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55:187–196

    Article  CAS  PubMed  Google Scholar 

  27. Darbre PD (2005) Aluminium, antiperspirants and breast cancer. J Inorg Biochem 99:1912–1919

    Article  CAS  PubMed  Google Scholar 

  28. Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. JProteome Res 5:3173–3178

    Article  CAS  Google Scholar 

  29. Emami S, Hosseinimehr SJ, Taghdisi SM, Akhlaghpoor S (2007) Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg MedChem Lett 17:45–48

    Article  CAS  Google Scholar 

  30. Dai Z, Canary JW (2007) Tailoring tripodal ligands for zinc sensing. New J Chem 31:1708–1718

    Article  CAS  Google Scholar 

  31. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  CAS  PubMed  Google Scholar 

  32. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  CAS  PubMed  Google Scholar 

  33. Bush AI, Pettingell WH, Multhaup G, Paradis MD, Vonsattel JP, Gusella JF, Beyreuther K, Mastersand CL, Tanzi RE (1994) Rapid induction of Alzheimer a beta amyloid formation by zinc. Science 265:1464–1467

    Article  CAS  PubMed  Google Scholar 

  34. Koh J-Y, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  CAS  PubMed  Google Scholar 

  35. Baran A (2013) Assessment of Zea mays sensitivity to toxic content of zinc in soil. Pol J Environ Stud 22:77

    CAS  Google Scholar 

  36. Li L, Liu F, Li HW (2011) Selective fluorescent probes based on CN isomerization and intramolecular charge transfer (ICT) for zinc ions in aqueous solution. Spectrochim Acta Part A 79:1688–1692

    Article  CAS  Google Scholar 

  37. Zhou Y, Yao J, Choi MMF, Chen YJ, Chen HY, Mohammad R, Zhuang RS, Chen HL, Wang F, Maskow T, Zaray G (2009) A combination method to study microbial communities and activities in zinc contaminated soil. J Hazard Mater 169:875–881

    Article  CAS  PubMed  Google Scholar 

  38. de Silva AP, Gunaratne QN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  39. Aragay G, Pons J, Merkoc A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111:3433–3458

    Article  CAS  PubMed  Google Scholar 

  40. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH New York 341

  41. Mameli M, Aragoni MC, Arca M, Caltagirone C, Demartin F, Farruggia G, de Filippo G, Devillanova FA, Garau A, Isaia F (2010) A selective, nontoxic, OFF–ON fluorescent molecular sensor based on 8-Hydroxyquinoline for probing Cd2+ in living cells. Chem Eur J 16:919–930

    Article  CAS  PubMed  Google Scholar 

  42. Alam R, Mistri T, Mondal P, Das D, Mandal SK, Khuda-Bukhsh AR, Ali M (2014) A novel copper(ii) complex as a nitric oxide turn-on fluorosensor: intracellular applications and DFT calculation. Dalton Trans 43:2566–2576

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Guo L, Wu FY, Jiang YB (2003) Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism. Org Lett 5:2667–2670

    Article  CAS  PubMed  Google Scholar 

  44. Xu Z, Xiao Y, Qian X, Cui J, Cui D (2005) Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org Lett 7:889–892

    Article  CAS  PubMed  Google Scholar 

  45. Schazmann B, Alhashimy N, Diamond D (2006) Chloride selective calix[4]arene optical sensor combining urea functionality with Pyrene Excimer transduction. J Am Chem Soc 128:8607–8614

    Article  CAS  PubMed  Google Scholar 

  46. Wu JS, Liu WM, Zhuang XQ, Wang F, Wang PF, Tao SL, Zhang XH, Wu SK, Lee ST (2007) Fluorescence turn on of Coumarin derivatives by metal Cations: a new signaling mechanism based on C=N isomerization org. Lett. 9:33–36

    CAS  Google Scholar 

  47. Sen S, Mukherjee T, Chattopadhyay B, Moirangthem A, Basu A, , Marek J, Chattopadhyay P (2012) A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging Analyst 137:3975–3981

    Article  CAS  PubMed  Google Scholar 

  48. Wang L, Qin W, Tang X, Dou W, Liu W, Teng Q, Yao X (2010) A selective, cell-permeable fluorescent probe for Al3+ in living cells. Org Biomol Chem 8:3751–3757

    Article  CAS  PubMed  Google Scholar 

  49. Banerjee A, , Sahana A, Das S, Lohar S, Guha S, Sarkar B, Mukhopadhyay SK, Mukherjee AK, Das D (2012) A naphthalene exciplex based Al3+ selective on-type fluorescent probe for living cells at the physiological pH range: experimental and computational studies. Analyst 137:2166–2175

    Article  CAS  PubMed  Google Scholar 

  50. Xu ZC, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  CAS  PubMed  Google Scholar 

  51. Kimura E, Koike T (1998) Recent development of zinc-fluorophores. Chem Soc Rev 27:179–184

    Article  CAS  Google Scholar 

  52. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem Commun 48:1039–1041

    Article  CAS  Google Scholar 

  53. Shellaiah M, Wu YH, Lin HC (2013) Simple pyridyl-salicylimine-based fluorescence “turn-on” sensors for distinct detections of Zn2+, Al3+ and OH ions in mixed aqueous media. Analyst 138:2931–2942

    Article  CAS  PubMed  Google Scholar 

  54. Dey S, Maity A, Shyamal M, Das D, Maity S, Giri PK, Mudi N, Samanta SS, Hazra P, Misra A (2019) An antipyrine based fluorescence “turn-on” dual sensor for Zn2+ and Al3+ and its selective fluorescence “turn-off” sensing towards 2,4,6-trinitrophenol (TNP) in the aggregated state. Photochem. Photobiol. Sci. 18:2717–2729

    Article  CAS  PubMed  Google Scholar 

  55. Erdemir S, Kocyigit O (2018) Dual recognition of Zn2+ and Al3+ ions by a novel probe containing two fluorophore through different signaling mechanisms. Sens and Act B: Chem 273:56–61

    Article  CAS  Google Scholar 

  56. Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl Chem 83:2213–2228

    Article  CAS  Google Scholar 

  57. Shyamal M, Mazumdar P, Maity S, Sahoo GP, Salgado-Moran G, Misra A (2016) Pyrene scaffold as real time fluorescent turn-on chemosensor for selective detection of trace level Al (III) and its aggregation induced emission enhancement. J Phys Chem A 120:210–220

    Article  CAS  PubMed  Google Scholar 

  58. Maeder M (1990) Nonlinear least-squares fitting of multivariate absorption data anal. Chem. 62:2220–2224

    CAS  Google Scholar 

  59. Kim YS, Park GJ, Lee JJ, Lee SY, Lee SY, Kim C (2015) Multiple target chemosensor: a fluorescent sensor for Zn(ii) and Al(iii) and a chromogenic sensor for Fe(ii) and Fe(iii). RSC Adv 5:11229–11239

    Article  CAS  Google Scholar 

  60. Goswami S, Paul S, Manna A (2013) A differentially selective chemosensor for a ratiometric response to Zn2+ and Al3+ in aqueous media with applications for molecular switches. RSC Adv 3:25079–25085

    Article  CAS  Google Scholar 

  61. Sun J, Liu Z, Wang Y, Xiao S, Pei M, Zhao X, Zhang G (2015) A fluorescence chemosensor based on imidazo[1,2-a]quinoline for Al3+ and Zn2+ in respective solutions. RSC Adv 5:100873–100878

    Article  CAS  Google Scholar 

  62. Qin J, Fan L, Wang B, Yang Z, Li T (2015) The design of a simple fluorescent chemosensor for Al3+/Zn2+ via two different approaches. Anal Methods 7:716–722

    Article  CAS  Google Scholar 

  63. Xu Y, Wang H, Zhao J, Yang X, Pei M, Zhanga G, Zhanga Y (2019) A dual functional fluorescence sensor for detection of Al3+ and Zn2+ in different solvent. New J Chem 43:14320–14326

    Article  CAS  Google Scholar 

  64. Maity S, Shyamal M, Maity R, Mudi N, Hazra P, Giri PK, Samanta SS, Pyne S, Misra A (2020) An antipyrine based fluorescent probe for distinct detection of Al3+ and Zn2+ and its AIEE behaviour. Photochem Photobiol Sci 19:681–694

    Article  CAS  PubMed  Google Scholar 

  65. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on responseto Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. MedChemComm. 48:1039–1042

    CAS  Google Scholar 

  66. Wang M, Yan FY, Zou Y, Chen L, Yang N, Zhou XG (2014) Recognition of Cu2+ and Hg2+ in physiological conditions by a new rhodamine based dual channel fluorescent probe. Sens Actuators B 192:512–521

    Article  CAS  Google Scholar 

  67. Huang CB, Li HR, Luoc YY, Xu L (2014) A naphthalimide-based bifunctional fluorescent probe for the differential detection of Hg2+ and Cu2+ in aqueous solution. Dalton Trans 43:8102–8108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

N. Mudi (Award No.: 09/599(0075)/2018-EMR-I), S. S. Samanta (Award No.: 09/599(0084)/2019-EMR-I), P. Hazra (Ref. No.: 204/(CSIR-UGC NET JUNE 2017)) and P. K. Giri (Ref. No.: 228/(CSIR-UGC NET DEC 2017)) thank CSIR and UGC, New Delhi, India for their individual fellowship. Departmental instrumental facilities from DST FIST and UGC SAP programs are gratefully acknowledged. We also acknowledge the help render by USIC, Vidyasagar University for doing both steady state and time resolved fluorescence study.

Funding

All the funders have been acknowledged in the acknowledgement section.

Author information

Authors and Affiliations

Authors

Contributions

All the authors (N. Mudi, P. Hazra, M. Shyamal, S. Maity, P. K. Giri, S. S. Samanta, D. Mandal, A. Misra) made substantial contribution while preparing the manuscript.

Ethical approval Not applicable.

Corresponding author

Correspondence to Ajay Misra.

Ethics declarations

Competing Interests

There is no conflict of interest while preparing the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

1H NMR Study, 13C NMR Study, FT-IR Study, Job’s plot, Dissociation Constant study, 1H NMR titration, Competitive analysis study, LOD study, Reversibility cycle, Table of real samples analysis. (DOCX 2443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudi, N., Hazra, P., Shyamal, M. et al. Designed Synthesis of Fluorescence ‘Turn-on’ Dual Sensor for Selective Detection of Al3+ and Zn2+ in Water. J Fluoresc 31, 315–325 (2021). https://doi.org/10.1007/s10895-020-02664-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02664-2

Keywords

Navigation