Skip to main content

Advertisement

Log in

In Vitro and In Vivo Evaluation of Fluorescently Labeled Borocaptate-Containing Liposomes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Boron neutron capture therapy (BNCT), a binary cancer therapeutic modality, has moved to a new phase since development of accelerator-based neutron sources and establishment of BNCT centers in Finland and Japan. That stimulated efforts for better boron delivery agent development. As liposomes have shown effective boron delivery properties and sufficient tumor retention, fluorescent liposome labelling may serve as a rapid method to study initial ability of newly synthesized liposomes to be captured by tumor cells prior to experiments on boron accumulation and neutron irradiation. In this work, we studied the accumulation and biodistribution of pegylated liposomes with encapsulated borocaptate (BSH) and a fluorescent label (Nile Red) in U87 (human glioblastoma), SW-620 (human colon carcinoma), SK-MEL-28 (human melanoma), FetMSC (mesenchymal human embryo stem cells), and EMBR (primary embryocytes) cell lines as well as an orthotopic xenograft model of U87 glioma in SCID mice. Results indicate that fluorescent microscopy is effective at determining the intracellular localization of the liposomes using a fluorescent label. The synthesized, pegylated liposomes showed higher accumulation in tumors compared to normal cells, with characteristic concentration peaks in SW-620 and U87 cell lines, and provided in vivo tumor selectivity with several-fold higher tumor tissue fluorescence at the 6-h timepoint.

Fluorescent images of U-87 glioma cells after 24 hours of incubation with BSH-containing liposomes labeled with lipophilic Nile Red (red color)and water-soluble FITC-Dextran (green color); cell nuclei in blue color (DAPI-staining) (×400). Scale bar is 50 μm. Fluorescent labelling serves as anexpress method to study liposome delivery efficiency prior to boron accumulation evaluation and BNCT irradiation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data are available.

References

  1. Hawthorne MF (1998) New horizons for therapy based on the boron neutron capture reaction. Mol Med Today 4:174–181. https://doi.org/10.1016/s1357-4310(98)01226-x

    Article  CAS  PubMed  Google Scholar 

  2. Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG (1998) The chemistry of neutron capture therapy. Chem Rev 98:1515–1562. https://doi.org/10.1021/cr941195u

    Article  CAS  PubMed  Google Scholar 

  3. Sauerwein WAG, Wittig A, Moss R, Nakagawa Y (2012) Neutron capture therapy. Principles and Applications. Springer-Verlag, Berlin, Heidelberg, Germany

    Book  Google Scholar 

  4. Barth RF, Zhang Z, Liu T (2018) A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun. (Lond) 38:36. https://doi.org/10.1186/s40880-018-0280-5

  5. Yamamoto T, Nakai K, Tsurubuchi T, Matsuda M, Shirakawa M, Zaboronok A, Endo K, Matsumura A (2009) Boron neutron capture therapy for newly diagnosed glioblastoma: a pilot study in Tsukuba. Appl Radiat Isot 67(Suppl. 7–8):S25–S26. https://doi.org/10.1016/j.apradiso.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  6. Miyatake S, Kawabata S, Hiramatsu R, Kuroiwa T, Suzuki M, Kondo N, Ono K (2016) Boron neutron capture therapy for malignant brain tumors. Neurol Med Chir (Tokyo) 56:361–371. https://doi.org/10.2176/nmc.ra.2015-0297

    Article  Google Scholar 

  7. Taskaev S (2019) Development of an accelerator-based epithermal neutron source for boron neutron capture therapy. Phys Part Nucl 50:569–575. https://doi.org/10.1134/S1063779619050228

    Article  CAS  Google Scholar 

  8. SUMITOMO Heavy industries. Available online: https://www.shi.co.jp/english/info/2019/6kgpsq0000002cez.html (accessed on 14 August 2020)

  9. NEUTRON THERAPEUTICS. Available online: http://www.neutrontherapeutics.com/news/pr-041819/ (accessed on 14 August 2020)

  10. TAE LIFE SCIENCES. Available online: https://taelifesciences.com/alphabeam-neutron-system/ (accessed on 14 August 2020)

  11. HUS HELSINKI UNIVERSITY HOSPITAL. Available online: https://www.hus.fi/en/about-hus/Hospital_areas/Comprehensive-Cancer-Center/Pages/BNCT-Project.aspx (accessed on 14 August 2020)

  12. SOUTHERN TOHOKU BNCT Research center. Available online: http://www.sthg-jp.com/motion.asp?siteid=100511&menuid=10491&lgid=1 (accessed on 14 August 2020)

  13. STELLA PHARMA. Available online: https://stella-pharma.co.jp/en/news/ (accessed on 14 August 2020)

  14. Barth RF, Mi P, Yang W (2018) Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 38:35. https://doi.org/10.1186/s40880-018-0299-7

    Article  Google Scholar 

  15. Watanabe T, Hattori Y, Ohta Y, Ishimura M, Nakagawa Y, Sanada Y, Tanaka H, Fukutani S, Masunaga SI, Hiraoka M, Ono K, Suzuki M, Kirihata M (2016) L-phenylalanine preloading reduces the (10)B(n, α)(7)Li dose to the normal brain by inhibiting the uptake of boronophenylalanine in boron neutron capture therapy for brain tumours. Cancer Lett 370:27–32. https://doi.org/10.1016/j.canlet.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  16. Hawthorne MF, Lee MW (2003) A critical assessment of boron target compounds for boron neutron capture therapy. J Neuro-Oncol 62:33–45. https://doi.org/10.1007/BF02699932

    Article  Google Scholar 

  17. Hawthorne MF, Shelly K (1997) Liposomes as drug delivery vehicles for boron agents. J Neuro-Oncol 33:53–58. https://doi.org/10.1023/A:1005713113990

    Article  CAS  Google Scholar 

  18. Li T, Hamdi J, Hawthorne MF (2006) Unilamellar liposomes with enhanced boron content. Bioconjug Chem 17:15–20. https://doi.org/10.1021/bc0501350

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura H (2009) Liposomal boron delivery for neutron capture therapy. Methods Enzymol 465:179–208. https://doi.org/10.1016/S0076-6879(09)65010-2

    Article  CAS  PubMed  Google Scholar 

  20. Shelly K, Feakes DA, Hawthorne MF, Schmidt PG, Krisch TA, Bauer WF (1992) Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc Natl Acad Sci U S A 89:9039–9043. https://doi.org/10.1073/pnas.89.19.9039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feakes DA, Shelly K, Knobler CB, Hawthorne MF (1994) Na3[B20H17NH3]: synthesis and liposomal delivery to murine tumors. Proc Natl Acad Sci U S A 91:3029–3033. https://doi.org/10.1073/pnas.91.8.3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feakes DA, Shelly K, Hawthorne MF (1995) Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc Natl Acad Sci U S A 92:1367–1370. https://doi.org/10.1073/pnas.92.5.1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M, Yanagie H (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumours by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 98:195–207. https://doi.org/10.1016/j.jconrel.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  24. Heber EM, Kueffer PJ, Lee MW Jr, Hawthorne MF, Garabalino MA, Molinari AJ, Nigg DW, Bauer W, Hughes AM, Pozzi EC, Trivillin VA, Schwint AE (2012) Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential. Radiat Environ Biophys 51:195–204. https://doi.org/10.1007/s00411-011-0399-0

    Article  CAS  PubMed  Google Scholar 

  25. Kueffer PJ, Maitz CA, Khan AA, Schuster SA, Shlyakhtina NI, Jalisatgi SS, Brockman JD, Nigg DW, Hawthorne MF (2013) Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc Natl Acad Sci U S A 110:6512–6517. https://doi.org/10.1073/pnas.1303437110

    Article  PubMed  PubMed Central  Google Scholar 

  26. Heber EM, Hawthorne MF, Kueffer PJ, Garabalino MA, Thorp SI, Pozzi EC, Monti Hughes A, Maitz CA, Jalisatgi SS, Nigg DW, Curotto P, Trivillin VA, Schwint AE (2014) Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc Natl Acad Sci U S a 11116077-16081. https://doi.org/10.1073/pnas.1410865111

  27. Tachikawa S, Miyoshi T, Koganei H, El-Zaria ME, Viñas C, Suzuki M, Ono K, Nakamura H (2014) Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy. Chem Commun (Camb) 50:12325–12328. https://doi.org/10.1039/c4cc04344h

    Article  CAS  Google Scholar 

  28. Maitz CA, Khan AA, Kueffer PJ, Brockman JD, Dixson J, Jalisatgi SS, Nigg DW, Everett TA, Hawthorne MF (2017) Validation and comparison of the therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes in multiple murine tumor models. Transl Oncol 10:686–692. https://doi.org/10.1016/j.tranon.2017.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kang W, Svirskis D, Sarojini V, McGregor AL, Bevitt J, Wu Z (2017) Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget 8:36614–36627. https://doi.org/10.18632/oncotarget.16625

    Article  PubMed  PubMed Central  Google Scholar 

  30. Luderer MJ, Muz B, Alhallak K, Sun J, Wasden K, Guenthner N, de la Puente P, Federico C, Azab AK (2019) Thermal sensitive liposomes improve delivery of boronated agents for boron neutron capture therapy. Pharm Res 36:144. https://doi.org/10.1007/s11095-019-2670-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee W, Sarkar S, Ahn H, Kim JY, Lee YJ, Chang Y, Yoo J (2020) PEGylated liposome encapsulating nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochem Biophys Res Commun 522:669–675. https://doi.org/10.1016/j.bbrc.2019.11.144

    Article  CAS  PubMed  Google Scholar 

  32. Zavjalov E, Zaboronok A, Kanygin V, Kasatova A, Kichigin A, Mukhamadiyarov R, Razumov I, Sycheva T, Mathis BJ, Maezono SEB, Matsumura A, Taskaev S (2020) Accelerator-based boron neutron capture therapy for malignant glioma: a pilot neutron irradiation study using boron phenylalanine, sodium borocaptate and liposomal borocaptate with a heterotopic U87 glioblastoma model in SCID mice. Int J Radiat Biol 96:868–878. https://doi.org/10.1080/09553002.2020.1761039

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura H, Ueda N, Ban HS, Ueno M, Tachikawa S (2012) Design and synthesis of fluorescence-labeled closo-dodecaborate lipid: its liposome formation and in vivo imaging targeting of tumors for boron neutron capture therapy. Org Biomol Chem 10:1374–1380. https://doi.org/10.1039/c1ob06500a

    Article  CAS  PubMed  Google Scholar 

  34. Safronov AV, Kabytaev KZ, Jalisatgi SS, Hawthorne MF (2014) Novel iodinated carboranes: synthesis of the 8-iodo-7,9-dicarba-nido-undecaborate anion and 2-iodo-1,7-dicarba-closo-dodecaborane. Dalton Trans 43:12467–12469. https://doi.org/10.1039/c4dt00764f

    Article  CAS  PubMed  Google Scholar 

  35. Mukhamadiyarov R, Tsygankova A, Kanygin V (2019) Using the luminescent dyes for the assessment of liposome transport properties as the boron (10B) carrier for boron neutron capture. RAP conference proceedings 4:30–35. https://doi.org/10.37392/RapProc.2019.07

  36. Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE, McNiel EA, Ohlfest JR, Freese AB, Moore PF, Lerner J, Lowenstein PR, Castro MG (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neuro-Oncol 85:133–148. https://doi.org/10.1007/s11060-007-9400-9

    Article  Google Scholar 

  37. Zavjalov EL, Razumov IA, Gerlinskaya LA, Romashchenko AV (2016) In vivo MRI visualization of U87 glioblastoma development dynamics in the model of orthotopic xenotransplantation to the SCID mouse. Russ J Genet Appl Res 6:448–453. https://doi.org/10.1134/S2079059716040225

    Article  CAS  Google Scholar 

  38. Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S (2011) Retro-orbital injections in mice. Lab Anim (NY) 40:155–160. https://doi.org/10.1038/laban0511-155

    Article  Google Scholar 

  39. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13:1400–1412. https://doi.org/10.4161/cc.28401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maurer N, Fenske DB, Cullis PR (2001) Developments in liposomal drug delivery systems. Expert Opin Biol Ther 1:1–25. https://doi.org/10.1517/14712598.1.6.923

    Article  Google Scholar 

  41. Ueno M, Ban HS, Nakai K, Inomata R, Kaneda Y, Matsumura A, Nakamura H (2010) Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioorg Med Chem 18:3059–3065. https://doi.org/10.1016/j.bmc.2010.03.050

    Article  CAS  PubMed  Google Scholar 

  42. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999. https://doi.org/10.2147/IJN.S68861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shirakawa M, Yamamto T, Nakai K, Aburai K, Kawatobi S, Tsurubuchi T, Yamamoto Y, Yokoyama Y, Okuno H, Matsumura A (2009) Synthesis and evaluation of a novel liposome containing BPA-peptide conjugate for BNCT. Appl Radiat Isot 67:S88–S90. https://doi.org/10.1016/j.apradiso.2009.03.101

    Article  CAS  PubMed  Google Scholar 

  44. Takeuchi I, Kanno Y, Uchiro H, Makino K (2019) Polyborane-encapsulated PEGylated liposomes prepared using post-insertion technique for boron neutron capture therapy. J Oleo Sci 68:1261–1270. https://doi.org/10.5650/jos.ess19218

    Article  CAS  PubMed  Google Scholar 

  45. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284. https://doi.org/10.1016/s0168-3659(99)00248-5

    Article  CAS  PubMed  Google Scholar 

  46. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151. https://doi.org/10.1016/j.addr.2010.04.009

    Article  CAS  PubMed  Google Scholar 

  47. Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T, Shirakawa T, Kirihata M, Kasaoka S, Maruyama K, Kumada H, Sakurai Y, Masunaga S, Ono K, Miyatake S (2008) Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. J Neuro-Oncol 87:287–294. https://doi.org/10.1007/s11060-008-9522-8

    Article  CAS  Google Scholar 

  48. Zaboronok A, Yamamoto T, Nakai K, Yoshida F, Uspenskii S, Selyanin M, Zelenetskii A, Matsumura A (2015) Hyaluronic acid as a potential boron carrier for BNCT: preliminary evaluation. Appl Radiat Isot 106:181–184. https://doi.org/10.1016/j.apradiso.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  49. Tsurubuchi T, Shirakawa M, Kurosawa W, Matsumoto K, Ubagai R, Umishio H, Suga Y, Yamazaki J, Arakawa A, Maruyama Y, Seki T, Shibui Y, Yoshida F, Zaboronok A, Suzuki M, Sakurai Y, Tanaka H, Nakai K, Ishikawa E, Matsumura A (2020) Evaluation of a novel boron-containing α-D-Mannopyranoside for BNCT. Cells 9:1277. https://doi.org/10.3390/cells9051277

    Article  CAS  PubMed Central  Google Scholar 

  50. Koganei H, Ueno M, Tachikawa S, Tasaki L, Ban HS, Suzuki M, Shiraishi K, Kawano K, Yokoyama M, Maitani Y, Ono K, Nakamura H (2013) Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers. Bioconjug Chem 24:124–132. https://doi.org/10.1021/bc300527n

    Article  CAS  PubMed  Google Scholar 

  51. Sato E, Zaboronok A, Yamamoto T, Nakai K, Taskaev S, Volkova O, Mechetina L, Taranin A, Kanygin V, Isobe T, Mathis BJ, Matsumura A (2018) Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy. J Radiat Res 59:101–107. https://doi.org/10.1093/jrr/rrx071

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Iuliia Taskaeva, Rinat Mukhamadiyarov, Evgenii Zavjalov and Ivan Razumov; Data acquisition, analysis and interpretation: Evgenii Zavjalov, Ivan Razumov, Roman Sibirtsev, Rinat Mukhamadiyarov, Iuliia Taskaeva, Aleksandr Kichigin, Anna Kasatova, Alexander Zaboronok; Funding and resources acquisition: Vladimir Kanygin, Rinat Mukhamadiyarov, Evgenii Zavjalov and Ivan Razumov; Project administration and supervision: Vladimir Kanygin and Evgenii Zavjalov; Writing original draft, review and editing: Alexander Zaboronok, Aleksandr Kichigin and Bryan J. Mathis.

Corresponding author

Correspondence to Alexander Zaboronok.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest or competing interests.

Ethics Approval

For this type of study, the ethical approval was not required, as all manipulations with animals were carried out in the specialized animal center in compliance with research practices in accordance with the directives of the European Community (86/609 / EEC).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanygin, V., Zaboronok, A., Taskaeva, I. et al. In Vitro and In Vivo Evaluation of Fluorescently Labeled Borocaptate-Containing Liposomes. J Fluoresc 31, 73–83 (2021). https://doi.org/10.1007/s10895-020-02637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02637-5

Keywords

Navigation