Skip to main content
Log in

A Sensitive Fluorescent Assay for Tetracycline Detection Based on Triple-helix Aptamer Probe and Cyclodextrin Supramolecular Inclusion

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein, an effective pyrene excimer signaled fluorescent biosensor for the determination of tetracycline based on triple-helix aptamer probe (TAP) and supramolecular inclusion of cyclodextrin was reported. The TAP was devised containing an aptamer loop, two DNA segment stems and a triplex-forming oligonucleotide (signal probe) labeled with pyrenes at 5′ and 3′ ends. The presence of target could result in its binding towards aptamer with a mighty affinity, leading to a conformation change of the TAP and whereupon the release of the signal probe. This liberty of signal probe enabled the formation of pyrene excimer, generating fluorescence signals. Further, signal amplification was fulfilled through the addition of γ-cyclodextrin which could interact with pyrene dimer, thus leading to an enhanced “on-state” of the sensing ensemble. In contrast, when the target was absent, the sensing ensemble remained “off-state” because of the long distance between two pyrene molecules. When the conditions were properly optimized, the increasing signal kept a linear dependence on target concentrations ranging from 5.0 nM to 100 nM, and the detection limit reached as low as 1.6 nM. In this way, a newly-constructed, simple, and economically affordable protocol enjoys desirable efficiency, sensitivity, specificity in biosensing. Also, its universality as another attractive behalf in assaying diverse targets was envisioned with only the need of matched aptamer replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bagheri E, Abnous K, Alibolandi M, Ramezani M, Taghdisid SM (2018) Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens Bioelectron 111:1–9

    Article  CAS  Google Scholar 

  2. Zheng J, Li JS, Jiang Y, Jin JY, Wang KM, Yang RH, Tan WH (2011) Design of aptamer-based sensing platform using triple-helix molecular switch. Anal Chem 83:6586–6592

    Article  CAS  Google Scholar 

  3. Geng WC, Yang RY (2020) A triple-helix molecular switch photoelectrochemical biosensor for ultrasensitive microRNA detection based on position-controllable CdS//CdTe signal enhancement and switching. Chem Comm 56:2909–2912

    Article  CAS  Google Scholar 

  4. Wang YH, Fang ZY, Ning G, Mao SM, Wu YH, Wu S, Liu GQ (2019) G-quadruplex-bridged triple-helix aptamer probe strategy: A label-free chemiluminescence biosensor for ochratoxin A. Sensor Actuat B-Chem 298:126867

    Article  CAS  Google Scholar 

  5. Wang YH, Yao L, Ning G, Wu YH, Wu S, Mao SM, Liu GQ (2019) An electrochemical strategy for tetracycline detection coupled triple helix aptamer probe with catalyzed hairpin assembly signal amplification. Biosens Bioelectron 143:111613

    Article  CAS  Google Scholar 

  6. Mazaafrianto DN, Maeki M, Ishida A, Tani H, Tokeshi M (2018) Recent microdevice-based aptamer sensors. Micromachines 9:202

    Article  Google Scholar 

  7. Negandary M (2020) Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens Bioelectron 152:112018

    Article  Google Scholar 

  8. Wang ZJ, Chen EN, Yang G, Zhao XY, Qu F (2020) Research advances of aptamers selection for small molecule targets, Chinese. J Anal Chem 48:573–582

    Google Scholar 

  9. Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK (2020) Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 251:126351

    Article  CAS  Google Scholar 

  10. Kumar LSV (2015) Tetracyclines and periodontal disease. Brit Dent J 218:213–213

    Article  Google Scholar 

  11. Bookstaver PB, Bland CM, Griffin B, Stover KR, Eiland LS, McLaughlin M (2015) A review of antibiotic use in pregnancy. Pharmacotherapy 35:1052–1062

    Article  CAS  Google Scholar 

  12. Jia P, Bu T, Sun XY, Liu YN, Liu JH, Wang QZ, Shui YH, Guo SW, Wang L (2019) A sensitive and selective approach for detection of tetracyclines using fluorescent molybdenum disulfide nanoplates. Food Chem 297:124969

    Article  CAS  Google Scholar 

  13. Wang G, Zhang HC, Liu J, Wang JP (2019) A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk. Anal Biochem 564:40–46

    Article  Google Scholar 

  14. Tang YF, Liu PP, Xu J, Li LL, Yang LW, Liu XQ, Liu SH, Zhou YM (2018) Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline. Sensor Actuat B-Chem 258:906–912

    Article  CAS  Google Scholar 

  15. Devkota L, Nguyen LT, Vu TT, Piro B (2018) Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface. Electrochim Acta 27:535–542

    Article  Google Scholar 

  16. Hou J, Zhang HC, Yang Q, Li MZ, Jiang L, Song YL (2015) Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small 11:2738–2742

    Article  CAS  Google Scholar 

  17. Wu YY, Huang PC, Wu FY (2020) A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chem 304:125377

    Article  CAS  Google Scholar 

  18. Kaczmarek M, Lis S (2009) Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions. Anal Chim Acta 639:96–100

    Article  CAS  Google Scholar 

  19. Zeng WS, Zhu CY, Liu HC, Liu J, Cai HP, Cheng XL, Wei LJ (2017) Ultrasensitive chemiluminescence of tetracyclines in the presence of MCLA. J Lumi 186:158–163

    Article  CAS  Google Scholar 

  20. Chen YS, Schwack W (2014) High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry. J Chromatogr A 1356:249–257

    Article  CAS  Google Scholar 

  21. Zhang ZW, Li XW, Ding SY, Jiang HY, Shen JZ, Xia X (2016) Multiresidue analysis of sulfonamides, quinolones, and tetracyclines in animal tissues by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem 204:252–262

    Article  CAS  Google Scholar 

  22. Shan XL, Pan YT, Dai FZ, Chen XH, Wang WC, Chen ZD (2020) ZnO/CNT-COOHs based solid-state ECL sensor for tetracycline detection in fishpond water. Microchem J 155:104708

    Article  CAS  Google Scholar 

  23. Yan C, Jiang DS, Tian YH, Xu L, Qian JC, Li HN, Xi JX, Li HM (2018) A sensitive signal-on photoelectrochemical sensor for tetracycline determination using visible-light-driven flower-like CN/BiOBr composites. Biosens Bioelectron 111:74–81

    Article  CAS  Google Scholar 

  24. Feng YX, Yan T, Wu TT, Zhang N, Yang QQ, Sun M, Yan LG, Du B, Wei Q (2019) A label-free photoelectrochemical aptasensing platform base on plasmon Au coupling with MOF-derived In2O3@g-C3N4 nanoarchitectures for tetracycline detection. Sensor Actuat B-Chem 298:126817

    Article  CAS  Google Scholar 

  25. Dembska A, Juskowiak B (2010) The fluorescence properties and lifetime study of G-quadruplexes single- and double-labeled with pyrene. J Fluoresc 20:1029–1035

    Article  CAS  Google Scholar 

  26. Shi C, Gu HX, Ma CP (2010) An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon. Anal Biochem 400:99–102

    Article  CAS  Google Scholar 

  27. Wu CC, Yan L, Wang CM, Lin HX, Wang C, Chen X, Yang CJ (2010) A general excimer signaling approach for aptamer sensors. Biosens Bioelectron 25:2232–2237

    Article  CAS  Google Scholar 

  28. Chen B, Liu KL, Zhang ZX, Ni XP, Goh SH, Li J (2012) Supramolecular hydrogels formed by pyrene-terminated poly(ethylene glycol) star polymers through inclusion complexation of pyrene dimers with gamma-cyclodextrin. Chem Comm 48:5638–5640

    Article  CAS  Google Scholar 

  29. Zhang QE, Deng T, Li JS, Xu WJ, Shen GL, Yu RQ (2015) Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for time-resolved fluorescence detection of biothiols in serum. Biosens Bioelectron 68:253–258

    Article  CAS  Google Scholar 

  30. Jin F, Lian Y, Li JS, Zheng J, Hu YP, Liu JH, Huang J, Yang RH (2013) Molecule-binding dependent assembly of split aptamer and gamma-cyclodextrin: A sensitive excimer signaling approach for aptamer biosensors. Anal Chim Acta 799:44–50

    Article  CAS  Google Scholar 

  31. Huang W, Li B, Lai GS, Zhang HY, Liu S, Yu AM (2019) Sensitive and rapid aptasensing of chloramphenicol by colorimetric signal transduction with a DNAzyme-functionalized gold nanoprobe. Food Chem 270:287–292

    Article  CAS  Google Scholar 

  32. Wang Y, Sun Y, Dai H, Ni P, Jiang S, Lu W, Li Z, Li Z (2016) A colorimetric biosensor using Fe3O4 nanoparticles for highly sensitive and selective detection of tetracyclines. Sensor Actuat B-Chem 236:621–626

    Article  CAS  Google Scholar 

  33. He L, Luo Y, Zhi W, Zhou P (2013) Colorimetric sensing of tetracyclines in milk based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles. Food Anal Meth 6:1704–1711

    Article  Google Scholar 

  34. Taghdisi SM, Danesh NM, Ramezani M, Abnous K (2016) A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens Bioelectron 85:509–514

    Article  CAS  Google Scholar 

  35. Shen G, Guo Y, Sun X, Wang X (2014) Electrochemical aptasensor based on prussian blue-chitosan-glutaraldehyde for the sensitive determination of tetracycline. Nano-Micro Let 6:143–152

    Article  CAS  Google Scholar 

  36. Tan H, Ma C, Song Y, Xu F, Chen S, Wang L (2013) Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex. Biosens Bioelectron 50:447–452

    Article  CAS  Google Scholar 

  37. Hou J, Li H, Wang L, Zhang P, Zhou T, Ding H, Ding L (2016) Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 146:34–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Hunan Provincial Natural Science Foundation of China (2018JJ3869) and Training Program for Excellent Young Innovators of Changsha (kq1802021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hui He and Chuchu Xie are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Xie, C., Yao, L. et al. A Sensitive Fluorescent Assay for Tetracycline Detection Based on Triple-helix Aptamer Probe and Cyclodextrin Supramolecular Inclusion. J Fluoresc 31, 63–71 (2021). https://doi.org/10.1007/s10895-020-02631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02631-x

Keywords

Navigation