Skip to main content
Log in

Selective Fluorometric Analysis of Hg(II) in Industrial Waste Water Samples

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The highly selective and sensitive fluorometric method has been developed for trace level determination of Hg(II) is based on photo-induced electron transfer between rhodamine-6G dye and metal complex. Quenching in fluorescence intensity by fluorescence resonance energy transfer (FRET) is due to interaction between metal ion complex and dye. The fluorescence emitted was measured at 510 and 550 nm, for excitation and emission wavelengths respectively. Possible interferences present in water samples, which could affect the analytical response are studied and determined. The calibration graph was dynamically linear from 0.002 to 0.05 mgL−1 of Hg(II) with limit of detection 7 × 10−4 mgL−1 and limit of quantitation 1.9 × 10−3 mgL−1. The Stern-Volmer constant (KSV) calculated for the quenching of R-6G with Hg (II) was 8.47 Lmg−1 s−1 at optimized reaction conditions. The proposed FRET based fluorometric method was applied successfully in different industrial wastewater samples with satisfactory outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bi N, Chen Y, Qi H, Zheng X, Chen Y, Liao X, Tian Y (2012) Spectrophotometric determination of mercury (II) ion using gold nanorod as probe. Sens Actuators B Chem 166:766–771. https://doi.org/10.1016/j.snb.2012.03.068

    Article  CAS  Google Scholar 

  2. Huang D, Liu X, Lai C, Qin L, Zhang C, Yi H, Zhang Y (2019) Colorimetric determination of mercury (II) using gold nanoparticles and double ligand exchange. Microchim Acta 186:1–8. https://doi.org/10.1007/s00604-018-3126-6

    Article  CAS  Google Scholar 

  3. Liu Y, Chang X, Hu X, Guo Y, Meng WF (2005) Highly selective determination of total mercury (II) sub microgram per liter by β-cyclodextrin polymer solid-phase spectrophotometry using 1, 3-di-(4-nitrodiazoamino)-benzene. Anal Chim Acta 532:121–128. https://doi.org/10.1016/j.aca.2004.10.062

    Article  CAS  Google Scholar 

  4. Satnami ML, Vaishanav SK, Nagwanshi R, Ghosh KK (2016) Spectrofluorometric determination of mercury and lead by colloidal CdS nanomaterial. J Dispers Sci Technol 37:196–204. https://doi.org/10.1080/01932691.2015.1039020

    Article  CAS  Google Scholar 

  5. Shamsipur M, Hosseini M, Alizadeh K, Alizadeh N, Yari A, Caltagirone C, Lippolis V (2005) Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12] aneNS2O) for selective subnanomolar detection of Hg (II) ions. Anal Chim Acta 533:17–24. https://doi.org/10.1016/j.aca.2004.10.069

    Article  CAS  Google Scholar 

  6. Alizadeh N, Moemeni A, Shamsipur M (2002) Poly (vinyl chloride)-membrane ion-selective bulk optode based on 1, 10-dibenzyl-1, 10-diaza-18-crown-6 and 1-(2-pyridylazo)-2-naphthol for Cu2+and Pb2+ ions. Anal Chim Acta 464:187–196. https://doi.org/10.1016/S0003-2670(02)00477-4

    Article  CAS  Google Scholar 

  7. Rezaei B, Shahshahanipour M, Ensafi AA, Farrokhpour H (2017) Development of highly selective and sensitive fluorimetric label-free mercury aptasensor based on cysteamine@ CdTe/ZnS quantum dots, experimental and theoretical investigation. Sens Actuators B Chem 247:400–407. https://doi.org/10.1016/j.snb.2017.03.082

    Article  CAS  Google Scholar 

  8. Yang YK, Yook KJ, Tae J (2005) A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127:16760–16761. https://doi.org/10.1021/ja054855t

    Article  CAS  Google Scholar 

  9. Niazi A, Momeni-Isfahani AZ (2009) Spectrophotometric determination of mercury in water samples after cloud point extraction using nonionic surfactant triton X-114. J Hazard Mater 165:1200–1203. https://doi.org/10.1016/j.jhazmat.2008.09.091

    Article  CAS  Google Scholar 

  10. De Wuilloud JC, Wuilloud RG, Silva MF, Olsina RA, Martinez LD (2002) Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry. Spectrochim Acta Part B 57:365–374. https://doi.org/10.1016/S0584-8547(01)00393-7

    Article  Google Scholar 

  11. Fong BMW, Siu TS, Lee JSK, Tam S (2007) Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J Anal Toxicol 31:281–287. https://doi.org/10.1093/jat/31.5.281

    Article  CAS  Google Scholar 

  12. Voegborlo RB, Akagi H (2007) Determination of mercury in fish by cold vapour atomic absorption spectrometry using an automatic mercury analyzer. Food Chem 100:853–858. https://doi.org/10.1016/j.foodchem.2005.09.025

    Article  CAS  Google Scholar 

  13. Çaylak O, Elçi ŞG, Höl A, Akdoğan A, Divrikli Ü, Elçi L (2019) Use of an aminated Amberlite XAD-4 column coupled to flow injection cold vapour generation atomic absorption spectrometry for mercury speciation in water and fish tissue samples. Food Chem 274:487–493. https://doi.org/10.1016/j.foodchem.2018.08.107

    Article  CAS  Google Scholar 

  14. Leao DJ, Junior MMS, Junior JBS, de Oliveira DA, Queiroz AF, Ferreira SL (2016) Ultrasound assisted extraction for the determination of mercury in sediment samples employing cold vapour atomic absorption spectrometry. Anal Methods 8:6554–6559. https://doi.org/10.1039/C6AY01810F

    Article  CAS  Google Scholar 

  15. Giacomino A, Redda AR, Squadrone S, Rizzi M, Abete MC, La Gioia C, Malandrino M (2017) Anodic stripping voltammetry with gold electrodes as an alternative method for the routine determination of mercury in fish. Comparison with spectroscopic approaches. Food Chem 221:737–745. https://doi.org/10.1016/j.foodchem.2016.11.111

    Article  CAS  Google Scholar 

  16. Kamyabi MA, Aghaei A (2016) Electromembrane extraction and anodic stripping voltammetric determination of mercury (II) using a glassy carbon electrode modified with gold nanoparticles. Microchim Acta 183:2411–2419. https://doi.org/10.1007/s00604-016-1884-6

    Article  CAS  Google Scholar 

  17. Carioni VM, Brockman JD, Morris MC, Ngwenyama RA, Schell LA, Spate VL, Crane S (2018) Instrumental neutron activation analysis, a technique for measurement of Se, Hg, Fe, Zn, K, Mn, Br, and the Hg: Se ratio in brain tissue samples with results from the Memory and Aging Project (MAP). J Radioanal Nucl Chem 318:43–48. https://doi.org/10.1007/s10967-018-6020-0

    Article  CAS  Google Scholar 

  18. Liu YM, Zhang FP, Jiao BY, Rao JY, Leng G (2017) Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography-cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples. J Chromatogr A 1493:1–9. https://doi.org/10.1016/j.chroma.2017.03.002

    Article  CAS  Google Scholar 

  19. Song X, Ye M, Tang X, Wang C (2013) Ionic liquids dispersive liquid–liquid microextraction and HPLC-atomic fluorescence spectrometric determination of mercury species in environmental waters. J Sep Sci 36:414–420. https://doi.org/10.1002/jssc.201200571

    Article  CAS  Google Scholar 

  20. Svechkarev D, Dereka B, Doroshenko A (2011) Mercury ions Complexation with a series of heterocyclic derivatives of 3-hydroxychromone: spectral effects and prospects for ultrasensitive Hg2+ probing. J Phys Chem A 115:4223–4230. https://doi.org/10.1021/jp110974n

    Article  CAS  Google Scholar 

  21. Bahta M, Ahmed N (2018) Design and synthesis of 1, 4-benzothiazine hydrazide as selective and sensitive colorimetric and turn-on fluorometric sensor for Hg2+ detection in aqueous medium. J Photochem Photobiol A 357:41–48. https://doi.org/10.1016/j.jphotochem.2018.02.022

    Article  CAS  Google Scholar 

  22. Venkatesan P, Thirumalivasan N, Wu SP (2017) A Rhodamine-based chemosensor with diphenylselenium for highly selective fluorescence turn-on detection of Hg2+ in vitro and in vivo. RSC Adv 7:21733–21739. https://doi.org/10.1039/C7RA02459B

    Article  CAS  Google Scholar 

  23. Ding H, Zheng C, Li B, Liu G, Pu S, Jia D, Zhou Y (2016) A rhodamine-based sensor for Hg 2+ and resultant complex as a fluorescence sensor for I. RSC Adv 6:80723–80728. https://doi.org/10.1039/C6RA17861H

    Article  CAS  Google Scholar 

  24. Beija M, Afonso CA, Martinho JM (2009) Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433. https://doi.org/10.1039/B901612K

    Article  CAS  Google Scholar 

  25. Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462. https://doi.org/10.1016/0022-2313(82)90045-X

    Article  Google Scholar 

  26. Zheng A, Chen J, Wu G, Wei H, He C, Kai X, Chen Y (2009) Optimization of a sensitive method for the “switch-on” determination of mercury (II) in waters using Rhodamine B capped gold nanoparticles as a fluorescence sensor. Microchim Acta 164:17–27. https://doi.org/10.1007/s00604-008-0023-4

    Article  CAS  Google Scholar 

  27. Wanichacheva N, Hanmeng O, Kraithong S, Sukrat K (2014) Dual optical Hg2+ selective sensing through FRET system of fluorescein and rhodamine B fluorophores. J Photochem Photobiol A 278:75–81. https://doi.org/10.1016/j.jphotochem.2014.01.003

    Article  CAS  Google Scholar 

  28. Lakowicz JR (2006) Mechanisms and dynamics of fluorescence quenching. In: (eds) Principles of fluorescence spectroscopy. Springer, Boston, pp 331-351

  29. Vaishanav SK, Korram J, Pradhan P, Chandraker K, Nagwanshi R, Ghosh KK, Satnami ML (2017) Green luminescent CdTe quantum dot based fluorescence nano-sensor for sensitive detection of arsenic (III). J Fluoresce 27:781–789. https://doi.org/10.1007/s10895-016-2011-0

    Article  CAS  Google Scholar 

  30. Verma VK, Tapadia K, Maharana T, Sharma A (2018) Convenient and ultra-sensitive fluorescence detection of bovine serum albumin by using Rhodamine-6G modified gold nanoparticles in biological samples. Luminescence 33:1408–1414. https://doi.org/10.1002/bio.3563

    Article  CAS  Google Scholar 

  31. Wanichacheva N, Setthakarn K, Prapawattanapol N, Hanmeng O, Lee VS, Grudpan K (2012) Rhodamine B-based “turn-on” fluorescent and colorimetric chemosensors for highly sensitive and selective detection of mercury(II) ions. J Lumin 132:35–40. https://doi.org/10.1016/j.jlumin.2011.07.015

    Article  CAS  Google Scholar 

  32. Córdoba MH, Garcia IL, Sánchez-Pedreño C (1984) Spectrophotometric determination of mercury with thiocyanate and Rhodamine B. Microchim Acta 84:467–475. https://doi.org/10.1007/BF01197161

    Article  Google Scholar 

  33. Matveichuk YV, Rakhman’ko EM, Yasinetskii VV (2015) Thiocyanate complexes of d metals: study of aqueous solutions by UV, visible, and IR spectrometry. Russ J Inorg Chem 60:100–104. https://doi.org/10.1134/S0036023615010076

    Article  CAS  Google Scholar 

  34. Karami C, Taher MA, Shahlaei M (2020) A simple method for determination of mercury (II) ions by PNBS-doped carbon dots as a fluorescent probe. J Mater Sci Mater Electron:1–9. https://doi.org/10.1007/s10854-020-03157-5

  35. Alizadeh K, Parooi R, Hashemi P, Rezaei B, Ganjali MR (2011) A new Schiff's base ligand immobilized agarose membrane optical sensor for selective monitoring of mercury ion. J Hazard Mater 186:1794–1800. https://doi.org/10.1016/j.jhazmat.2010.12.067

    Article  CAS  Google Scholar 

  36. Ciucu A (2010) Fast spectrometric method for mercury (II) determination based on glucose-oxidase inhibition. Anal Lett 43:1377–1386. https://doi.org/10.1080/00032710903518781

    Article  CAS  Google Scholar 

  37. Li H, Zhang Y, Wang X, Xiong D, Bai Y (2007) Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Mater Lett 61:1474–1477. https://doi.org/10.1016/j.matlet.2006.07.064

    Article  CAS  Google Scholar 

  38. Khan H, Ahmed MJ, Bhanger MI (2005) A simple spectrophotometric determination of trace level mercury using 1, 5-diphenylthiocarbazone solubilized in micelle. Anal Sci 21:507–512. https://doi.org/10.2116/analsci.21.507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge gratefully to National Institute of Technology, Raipur (CG) India for making availability of essential instrument as well as lab facility. We sincerely show our gratitude to University Grants Commission (UGC), New Delhi, India for providing financial endorsement as fellowship (JRF student id-141394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Tapadia.

Ethics declarations

Conflict of Interest

There is no conflict to declare in our manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Tapadia, K. & Sharma, A. Selective Fluorometric Analysis of Hg(II) in Industrial Waste Water Samples. J Fluoresc 30, 1375–1381 (2020). https://doi.org/10.1007/s10895-020-02627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02627-7

Keywords

Navigation