Skip to main content
Log in

High Contrast Surface Enhanced Fluorescence of Carbon Dot Labeled Bacteria Cells on Aluminum Foil

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Surface enhanced fluorescence (SEF) is observed with very high contrast (100–200) from single E. coli bacteria cells labeled with Carbon nanodots (CDs), on aluminum foil and aluminum film. Likely, it is the first application of organic CDs in SEF. SEF with 633 nm excitation delivered a much higher contrast than SEF with 532 nm excitation. Contrast is the ratio of the fluorescent intensities of labeled CDs to unlabeled (control) cells. High contrast with CDs is also observed on the gold film, silicon, and glass. Enhancement factor (EF) is the ratio of the signal on the metal substrate to the signal on the glass. Single E. coli cells, labeled with commercial graphene quantum dots (GCDs), demonstrated higher EFs (44 on gold, 35 on Al film), but at least one order of magnitude lower contrast (7–10 on aluminum and gold) than cells labeled with organic CDs. Therefore, organic CDs can be a good choice for cell imaging/labeling, capable of achieving a signal to noise (standard deviation of the control) as high as 700 on Al film. Overall, aluminum foil and film are highlighted as inexpensive but efficient substrates for Metal Enhanced Fluorescence, particularly MEF of bacterial cells stained with CDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  CAS  Google Scholar 

  2. Zhang J, Malicka J, Gryczynski I, Lakowicz JR (2005) Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. J Phys Chem B 109(16):7643–7648

    Article  CAS  Google Scholar 

  3. Ray K, Szmacinski H, Lakowicz JR (2009) Enhanced fluorescence of proteins and label-free bioassays using aluminum nanostructures. Anal Chem 81(15):6049–6054

    CAS  Google Scholar 

  4. Geddes CD, Lakowicz JR (2002) Editorial: metal-enhanced fluorescence. J Fluoresc 12(2):121–129

    Google Scholar 

  5. Tian S, Neumann O, McClain MJ, Yang X, Zhou L, Zhang C, Nordlander P, Halas NJ (2017) Aluminum Nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection. Nano Lett 17(8):5071–5077

    CAS  Google Scholar 

  6. Akbay N, Lakowicz JR, Ray K (2012) Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles. J Phys Chem C Nanomater Interfaces 116(19):10766–10773

    CAS  Google Scholar 

  7. Cerjan B, Yang X, Nordlander P, Halas NJ (2016) Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy. ACS Photonics 3(3):354–360

    CAS  Google Scholar 

  8. Chen K, Dao TD, Ishii S, Aono M, Nagao T (2015) Infrared aluminum Metamaterial perfect absorbers for Plasmon-enhanced infrared spectroscopy. Adv Funct Mater 25(42):6637–6643

    CAS  Google Scholar 

  9. Gutés A, Carraro C, Maboudian R (2010) Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate. J Am Chem Soc 132(5):1476–1477

    Google Scholar 

  10. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2014) Aluminum for Plasmonics. ACS Nano 8(1):834–840

    Article  CAS  Google Scholar 

  11. Gudun K, Elemessova Z, Khamkhash L, Ralchenko E, Bukasov R (2017) Commercial gold nanoparticles on untreated aluminum foil: versatile, sensitive, and cost-effective SERS substrate. J Nanomater 2017:9182025

    Article  Google Scholar 

  12. Sultangaziyev A, Akhmetova A, Kunushpayeva Z, Rapikov A, Filchakova O, Bukasov R (2020) Aluminum foil as a substrate for metal enhanced fluorescence of bacteria labelled with quantum dots, shows very large enhancement and high contrast. Sensing Bio-Sens Res 28:100332

    Article  Google Scholar 

  13. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6(1):143–162

    Article  CAS  Google Scholar 

  14. Nann T, Skinner WM (2011) Quantum dots for electro-optic devices. ACS Nano 5(7):5291–5295

    Article  CAS  Google Scholar 

  15. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  Google Scholar 

  16. Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem Eur J 20(8):2254–2263

    Article  CAS  Google Scholar 

  17. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921–6939

    Article  CAS  Google Scholar 

  18. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie S-Y, Sun Y-P (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319

    Article  CAS  Google Scholar 

  19. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46(34):6473–6475

    Article  CAS  Google Scholar 

  20. Shi D, Yan F, Zheng T, Wang Y, Zhou X, Chen L (2015) P-doped carbon dots act as a nanosensor for trace 2,4,6-trinitrophenol detection and a fluorescent reagent for biological imaging. RSC Adv 5(119):98492–98499

    CAS  Google Scholar 

  21. Li J, Jiao Y, Feng L, Zhong Y, Zuo G, Xie A, Dong W (2017) Highly N,P-doped carbon dots: Rational design, photoluminescence and cellular imaging. Microchim Acta 184(8):2933–2940

    CAS  Google Scholar 

  22. Zhang Y, Gonçalves H, Esteves da Silva JCG, Geddes CD (2011) Metal-enhanced photoluminescence from carbon nanodots. Chem Commun 47(18):5313–5315

    CAS  Google Scholar 

  23. Bukasov R, Filchakova O, Gudun K, Bouhrara M (2018) Strong surface enhanced florescence of carbon dot labeled Bacteria cells observed with high contrast on gold film. J Fluoresc 28(1):1–4

    CAS  Google Scholar 

  24. Xie Y, Filchakova O, Yang Q, Yesbolatov Y, Tursynkhan D, Kassymbek A, Bouhrara M, Wang K, Balanay M, Fan H (2017) Inhibition of Cancer cell proliferation by carbon dots derived from date pits at low-dose. ChemistrySelect 2(14):4079–4083

    CAS  Google Scholar 

  25. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-Passivated Graphene quantum dots. ACS Nano 6(6):5102–5110

    CAS  Google Scholar 

  26. Jiang D, Chen Y, Li N, Li W, Wang Z, Zhu J, Zhang H, Liu B, Xu S (2015) Synthesis of luminescent Graphene quantum dots with high quantum yield and their toxicity study. PLoS One 10(12):e0144906–e0144906

    Google Scholar 

  27. Kumar GS, Thupakula U, Sarkar PK, Acharya S (2015) Easy extraction of water-soluble graphene quantum dots for light emitting diodes. RSC Adv 5(35):27711–27716

    CAS  Google Scholar 

  28. Chen W, Lv G, Hu W, Li D, Chen S, Dai Z (2018) Synthesis and applications of graphene quantum dots: a review. Nanotechnology Reviews 7(2):157

    Google Scholar 

  29. Liu T, Yu K, Gao L, Chen H, Wang N, Hao L, Li T, He H, Guo Z (2017) A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J Mater Chem A 5(34):17848–17855

    CAS  Google Scholar 

  30. Tao W, Ji X, Xu X, Islam MA, Li Z, Chen S, Saw PE, Zhang H, Bharwani Z, Guo Z, Shi J, Farokhzad OC (2017) Antimonene quantum dots: synthesis and application as near-infrared Photothermal agents for effective Cancer therapy. Angewandte Chemie - International Edition 56(39):11896–11900

    Article  CAS  Google Scholar 

  31. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y (2017) Graphene quantum dots-capped magnetic Mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and Photothermal therapy. Small 13(2)

  32. Ahmed SR, Hossain MA, Park JY, Kim SH, Lee D, Suzuki T, Lee J, Park EY (2014) Metal enhanced fluorescence on nanoporous gold leaf-based assay platform for virus detection. Biosens Bioelectron 58:33–39

    Article  CAS  Google Scholar 

  33. Tang Y, Yang Q, Wu T, Liu L, Ding Y, Yu B (2014) Fluorescence enhancement of cadmium selenide quantum dots assembled on silver nanoparticles and its application to glucose detection. Langmuir 30(22):6324–6330

    Article  CAS  Google Scholar 

  34. Kannegulla A, Liu Y, Wu B, Cheng LJ (2018) Plasmonic open-ring Nanoarrays for broadband fluorescence enhancement and ultrasensitive DNA detection. J Phys Chem C 122(1):770–776

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Nazarbayev University Faculty Development Competitive Research grant 090118FD5352 (Kazakhstan). There is no potential conflict of interest pertinent to this research. The authors would like to acknowledge Yunona Bukasova for proofreading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostislav Bukasov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukasov, R., Kunushpayeva, Z., Rapikov, A. et al. High Contrast Surface Enhanced Fluorescence of Carbon Dot Labeled Bacteria Cells on Aluminum Foil. J Fluoresc 30, 1477–1482 (2020). https://doi.org/10.1007/s10895-020-02610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02610-2

Keywords

Navigation