Skip to main content
Log in

Spectroscopic and Photo-Physical Properties of Near-IR Laser Dye in Novel Benign Green Solvents

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

IR-792 as near IR (NIR) laser dye was dissolved with different concentrations in two types of ionic liquids (ILs) of different anion and cation, 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIM TFSI) & 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4), as the benign green solvent and in methanol (MeOH) as a standard solvent. The behavior of fluorescence of IR-792 dye was studied. The fluorescence of IR-792 dissolved in the ILs was heavily compared to organic solvent. Some photo-physical parameters of IR-792 were calculated. Mainly, IR-792 had a very low quantum yield of fluorescence with high intersystem crossing rate & fluorescence lifetime in picosecond range. Optical absorption and behavior of fluorescence for the rigorously the purified imidazolium ILs in the neat condition and effect of IR-792 on their fluorescence have been examined. The emission behavior of IR-792 in green solvents was independent upon the wavelength of excitation, while the emission behavior of green solvents dependent upon the wavelength of excitation whether in pure state or with NIR laser dye. At most, the intensity of fluorescence of ILs is dependent upon dye concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qiu D, Liu Y, Li M, Chen H, Li H (2017) J Lumin 185:286–291

    Article  CAS  Google Scholar 

  2. Dähne S (1978) Science 199:1163–1167

    Article  PubMed  Google Scholar 

  3. Daehne S, Resch-Genger U, and Wolfbeis OS (1997) Near-infrared dyes for high technology applications. Springer, Dordrecht

  4. E. Terpetschnig and O. S. Wolfbeis (1998) Luminescent probes for NIR sensing applications. In book title: Near-infrared dyes for high technology applications. Springer, Dordrecht, pp 161–182

  5. Patonay G, Salon J, Sowell J, Strekowski L (2004) Noncovalent labeling of biomolecules with red and near- infrared dyes. Molecules 9:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vinatier V, Guieu V, Madaule Y, Maturano M, Payrastre C, Hoffmann P (2010) Superoxide-induced bleaching of streptocyanine dyes: application to assay the enzymatic activity of superoxide dismutases. Anal Biochem 405:255–259

    Article  CAS  PubMed  Google Scholar 

  7. Venner MRW, Case AD, Fulker DJ (2004) Solid State Lasers XIII: Technol Devices 5332:189–199

    CAS  Google Scholar 

  8. Soper SA, Mattingly QL (1994) Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes: implications to the design of near-IR fluorochromes with high fluorescence efficiencies. J Am Chem Soc 116:3744–3752

    Article  CAS  Google Scholar 

  9. Billard I, Moutiers G, Labet A, El Azzi A, Gaillard C, Mariet C, Lützenkirchen K (2003) Stability of divalent europium in an ionic liquid: spectroscopic investigations in 1-methyl-3-butylimidazolium hexafluorophosphate. Inorg Chem 42:1726–1733

    Article  CAS  PubMed  Google Scholar 

  10. Álvaro M, Ferrer B, Garcia H, Narayana M (2002) Chem Phys Lett 362:435–440

    Article  Google Scholar 

  11. Driesen K, Nockemann P, Binnemans K (2004) Ionic liquids as solvents for near-infrared emitting lanthanide complexes. Chem Phys Lett 395:306–310

    Article  CAS  Google Scholar 

  12. Somers AE, Howlett PC, MacFarlane DR, Forsyth M (2013) A review of ionic liquid lubricants. Lubricants 1:3–21

    Article  Google Scholar 

  13. Wilkes JS, Zaworotko MJ (1992) J Chem Soc Chem Commun 13:965–967

    Article  Google Scholar 

  14. Pirovano V, Marchetti M, Carbonaro J, Brambilla E, Rossi E, Ronda L, Abbiati G (2020) Synthesis and photophysical properties of isocoumarin-based D-π-A systems. Dyes Pigments 173:107917

    Article  Google Scholar 

  15. Paul A, Mandal PK, Samanta A (2005) How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6]. Chem Phys Lett 402:375–379

    Article  CAS  Google Scholar 

  16. Hardacre C, Holbrey JD, McMath SEJ, Bowron DT, Soper AK (2003) J Chem Phys 118:273–278

    Article  CAS  Google Scholar 

  17. Katayanagi H, Hayashi S, Hamaguchi H, Nishikawa K (2004) Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and Raman spectroscopy. Chem Phys Lett 392:460–464

    Article  CAS  Google Scholar 

  18. Hu Z, Margulis CJ (2006) Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. Proc Natl Acad Sci 103:831–836

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193

    Article  CAS  PubMed  Google Scholar 

  20. Paul A, Mandal PK, Samanta A (2005) On the optical properties of the imidazolium ionic liquids. J Phys Chem B 109:9148–9153

    Article  CAS  PubMed  Google Scholar 

  21. Paul A, Samanta A (2006) Optical absorption and fluorescence studies on imidazolium ionic liquids comprising thebis(trifluoromethanesulphonyl)imide anion. J Chem Sci 118:335–340

    Article  CAS  Google Scholar 

  22. AL-Aqmar DM, Abdelkader HI, Kana MTHA (2017) J Mol Liq 231:370–378

    Article  CAS  Google Scholar 

  23. Al-Aqmar DM, Abdelkader HI, Kana MTHA (2015) Optical, photo-physical properties and photostability of pyrromethene (PM-597) in ionic liquids as benign green-solvents. J Lumin 161:221–228

    Article  CAS  Google Scholar 

  24. Al-Aqmar DM, Abdelkader HI, Kana MTHA (2015) Spectroscopic properties and amplified spontaneous emission of fluorescein laser dye in ionic liquids as green media. Opt Mater 47:573–581

    Article  CAS  Google Scholar 

  25. Soriano E, Holder C, Levitz A, Henary M (2016) Molecules 21:23

    Article  Google Scholar 

  26. Kurutos A, Ryzhova O, Tarabara U, Trusova V, Gorbenko G, Gadjev N, Deligeorgiev T (2016) Novel synthetic approach to near-infrared heptamethine cyanine dyes and spectroscopic characterization in presence of biological molecules. J Photochem Photobiol A Chem 328:87–96

    Article  CAS  Google Scholar 

  27. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 58:3–7

    Article  CAS  PubMed  Google Scholar 

  28. Costela A, Munoz JM, Douhal A, Figuera JM, Acuna AU (1989) Experimental test of a four-level kinetic model for excited-state intramolecular proton transfer dye lasers. Appl Phys B Lasers Opt 49:545–552

    Article  Google Scholar 

  29. J. R. Lakowicz (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media, Springer, Dordrecht

  30. Crosby GA, Demas JN (1971) Measurement of photoluminescence quantum yields. Review. J Phys Chem 75:991–1024

    Article  CAS  Google Scholar 

  31. Ruland G, Gvishi R, Prasad PN (1996) Multiphasic nanostructured composite: multi-dye tunable solid state laser. J Am Chem Soc 118:2985–2991

    Article  CAS  Google Scholar 

  32. D’Alessio JT, Ludwig PK, Burton M (1964) Ultraviolet lamp for the generation of intense, constant‐shape pulses in the subnanosecond region. Rev Sci Instrum 35:1015–1017

    Article  Google Scholar 

  33. Pavlopoulos TG (2002) Scaling of dye lasers with improved laser dyes. Prog Quantum Electron 26:193–224

    Article  CAS  Google Scholar 

  34. Raju B, Varadarajan TS (1995) Photophysical properties and energy transfer dye laser characteristics of 7-diethylamino-3-heteroaryl coumarin in solution. Laser Chem 16:109–120

    Article  CAS  Google Scholar 

  35. Sakr MEM, Kana MTHA, Elwahy AHM, El-Daly SA, Ebeid E-ZM (2020) Novel far UV–Vis absorbing bis(dihydrophenanthro[9,10-e][1,2,4]triazine) derivative dyes: synthesis, optical, photophysical and solvatochromic properties. J Mol Struct 1206:127690

    Article  CAS  Google Scholar 

  36. Levitz A, Marmarchi F, Henary M (2018) Synthesis and optical properties of near-infrared meso-phenyl-substituted symmetric heptamethine cyanine dyes. Molecules 23:226

    Article  PubMed Central  Google Scholar 

  37. Schulman S. G. (2017) Fluorescence and phosphorescence spectroscopy: physicochemical principles and practice. Elsevier

Download references

Acknowledgments

The authors would like to thank Cairo University for Supporting and funding this work through project no. (16–33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maram T. H. Abou Kana.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Aqmar, D.M., Al-Shamiri, H.A.S., AL-Shareef, J.M. et al. Spectroscopic and Photo-Physical Properties of Near-IR Laser Dye in Novel Benign Green Solvents. J Fluoresc 30, 1095–1103 (2020). https://doi.org/10.1007/s10895-020-02576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02576-1

Keywords

Navigation