Skip to main content
Log in

Spectral-Fluorescence Properties of Zn(II)-Octaphenyltetraazaporphyrins

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

A Correction to this article was published on 18 May 2020

This article has been updated

Abstract

Zn(II)-octa-(4-chlorophenyl)- and Zn(II)-octa-(4-bromophenyl)tetraazaporphyrins were synthesized by the reaction of cyclotetramerization of di-(4-chlorophenyl)- and di-(4-bromophenyl)maleonitriles with zinc(II) chloride. The obtained compounds were identified by UV-vis, IR, NMR 1H spectroscopy and mass spectrometry. Geometry optimization of the series of halogenated Zn(II)-octaaryltetraazaporphyrins was performed using the density functional method with the BP86 functional and the def2-TZVP basis set. An analysis of the distribution of molecular orbital energies in the neighborhood of highest occupied molecular orbitals (HOMO and HOMO-1) and lowest unoccupied molecular orbitals (LUMO and LUMO+1) and the width of the HOMO – LUMO energy gaps (EH-L) was performed for the studied compounds. Fluorimetric measurements of the Zn(II)-octaphenyltetraazaporphyrins in toluene were carried out and fluorescence quantum yields of studied compounds were determined and analyzed. It has been shown that the halogen on the para-position of the phenyl groups significantly affects the value of the obtained quantum yields of fluorescence emission but does not significantly affect the Stokes shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 18 May 2020

    The original version of this article unfortunately contained a mistake. In the section of ���Acknowledgements��� the grant number is incorrectly indicated. The corrected grant number is given below.

References

  1. de la Torre G, Claessens CG, Torres T (2007) Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem Commun 20:2000–2015. https://doi.org/10.1039/B614234F

    Article  Google Scholar 

  2. Reddy PY, Giribau L, Lyness C, Snaith HJ, Vijaykumar C, Chandrasekharam M, Lakshmikantam M, Yum JH, Kalyanasundaram K, Grätzel M, Nazeeruddin MK (2007) Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine. Angew Chem Int Ed 46:373–376. https://doi.org/10.1002/anie.200603098

    Article  CAS  Google Scholar 

  3. Katoh K, Yoshida Y, Yamashita M, Miyasaka H, Breedlove BK, Kajiwara T, Takaishi S, Ishikawa N, Isshiki H, Zhang YF, Komeda T, Yamagishi M, Takeya J (2009) Direct observation of lanthanide (III)-phthalocyanine molecules on Au (111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb (III)-and Dy (III)-phthalocyanine molecules. J Am Chem 131:9967–9976. https://doi.org/10.1021/ja902349t

    Article  CAS  Google Scholar 

  4. Pandey RK, Goswami LN, Chen Y, Gryshuk A, Missert JR, Oseroff A, Dougherty TJ (2006) Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy. Lasers Surg Med 38:445–467. https://doi.org/10.1002/lsm.20352

    Article  PubMed  Google Scholar 

  5. Ghoroghchian PP, Frail PR, Susumu K, Blessington D, Brannan AK, Bates FS, Chance B, Hammer DA, Therien MJ (2005) Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci U S A 102:2922–2927. https://doi.org/10.1073/pnas.0409394102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trivedi ER, Blumenfeld CM, Wielgos T, Pokropinski S, Dande P, Hai TT, Barrett AGM, Hoffman BM (2012) Multi-gram synthesis of a porphyrazine platform for cellular translocation, conjugation to doxorubicin, and cellular uptake. Tetrahedron Lett 53:5475–5478. https://doi.org/10.1016/j.tetlet.2012.07.087

    Article  CAS  Google Scholar 

  7. Chen L, Zhang Z, Wang Y, Guan Y, Deng K, Lv K, Suna J, Li Z, Li M (2013) Photocatalytic properties and electrochemical characteristic of a novel biomimetic oxygenase enzyme photocatalyst iron (II) tetrahydroxymethyl tetra (1, 4-dithiin) porphyrazine for the degradation of organic pollutants. J Mol Catal A 372:114–120. https://doi.org/10.1016/j.molcata.2013.02.013

    Article  CAS  Google Scholar 

  8. Trivedi ER, Harney AS, Olive MB, Podgorski I, Moin K, Sloane BF, Barrett AGM, Meade TJ, Hoffman BM (2010) Chiral porphyrazine near-IR optical imaging agent exhibiting preferential tumor accumulation. Proc Natl Acad Sci U S A 107:1284–1288. https://doi.org/10.1073/pnas.0912811107

    Article  PubMed  Google Scholar 

  9. Goslinski T, Tykarska E, Kryjewski M, Osmalek T, Sobiak S, Gdaniec M, Dutkiewicz Z, Mielcarek J (2011) Potential aluminium (III)-and gallium (III)-selective optical sensors based on porphyrazines. Anal Sci 27:511–511. https://doi.org/10.2116/analsci.27.511

    Article  CAS  PubMed  Google Scholar 

  10. Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171. https://doi.org/10.1126/science.1125949

    Article  CAS  PubMed  Google Scholar 

  11. Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  12. Klapshina LG, Douglas WE, Grigoryev IS, Korytin AI, Lavrentiev SA, Lopatin MA, Lukyanov AY, Semenov VV, Gerbier P, Treushnikov VM (2009) Novel metal-template assembled highly-functionalized cyanoporphyrazine ytterbium and vanadium complexes for potential photonic and optoelectronic applications. J Mater Chem 19:3668–3676. https://doi.org/10.1039/B821667C

    Article  CAS  Google Scholar 

  13. Lermontova SA, Grigoryev IS, Shilyagina NY, Peskova NN, Balalaeva IV, Shirmanova MV, Klapshina LG (2016) New porphyrazine macrocycles with high viscosity-sensitive fluorescence parameters. Russ J Phys Chem A 86:1330–1338. https://doi.org/10.1134/S1070363216060189

    Article  CAS  Google Scholar 

  14. Cook AH, Linstead RP (1937) Phthalocyanines. Part XI The preparation of octaphenylporphyrazines from diphenylmaleinitrile. J Chem Soc:929–933. https://doi.org/10.1039/JR9370000929

  15. Chizhova NV, Ivanova YB, Rusanov AI, Khrushkova YV, Mamardashvili NZ (2019) Synthesis and spectral and fluorescent properties of metal complexes of Octakis (4-flurophenyl) tetraazaporphyrins. Russ J Org Chem 55:655–661. https://doi.org/10.1134/S1070428019050129

    Article  CAS  Google Scholar 

  16. Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media, New York

    Google Scholar 

  17. Ivanova YB, Mamardashvili NZ (2017) Fluorescent properties and kinetic rate constants of some Zn-Tetraarylporphyrins formation in acetonitrile. J Fluoresc 27:303–307. https://doi.org/10.1007/s10895-016-1958-1

    Article  CAS  PubMed  Google Scholar 

  18. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  Google Scholar 

  19. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824. https://doi.org/10.1103/physrevb.33.8822

    Article  CAS  Google Scholar 

  20. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  21. Hirao H (2011) Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. J Phys Chem A 115:9308–9313. https://doi.org/10.1021/jp2052807

    Article  CAS  PubMed  Google Scholar 

  22. Nemykin VN, Sabin JR (2012) Profiling energetics and spectroscopic signatures in prototropic tautomers of asymmetric phthalocyanine analogues. J Phys Chem A 116:7364–7371. https://doi.org/10.1021/jp304386x

    Article  CAS  PubMed  Google Scholar 

  23. Colomban C, Kudrik EV, Briois V, Shwarbrick JC, Sorokin AB, Afanasiev P (2014) X-ray absorption and emission spectroscopies of X-bridged diiron phthalocyanine complexes (FePc) 2X (X= C, N, O) combined with DFT study of (FePc) 2X and their high-valent diiron oxo complexes. Inorg Chem 53:11517–11530. https://doi.org/10.1021/ic501463q

    Article  CAS  PubMed  Google Scholar 

  24. Martynov AG, Mack J, May AK, Nyokong T, Gorbunova YG, Tsivadze AY (2019) Methodological survey of simplified TD-DFT methods for fast and accurate interpretation of UV–Vis–NIR spectra of Phthalocyanines. ACS Omega 4:7265–7284. https://doi.org/10.1021/acsomega.8b03500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  26. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094. https://doi.org/10.1002/chin.199508316

    Article  CAS  Google Scholar 

  27. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16:1449–1458. https://doi.org/10.1002/jcc.540161202

    Article  CAS  Google Scholar 

  28. Zvezdina SV, Mal'tseva OV, Chizhova NV, Mamardashvili NZ (2014) Complexation properties of Octa (4-bromophenyl) tetraazaporphyrin and its magnesium (II) complex with salts of d-metals in DMF. Macroheterocycles 7:276–280. https://doi.org/10.6060/mhc140492m

    Article  CAS  Google Scholar 

  29. Berezin BD, Khelevina OG (1985) In Porphyrins: structure, properties, synthesis. Moscow, Russia

  30. Rosa A, Ricciardi G, Baerends EJ (2006) Synergism of porphyrin-core saddling and twisting of meso-aryl substituents. J Phys Chem A 110:5180–5190. https://doi.org/10.1021/jp060931i

    Article  CAS  PubMed  Google Scholar 

  31. Brinkmann H, Kelting C, Makarov S, Tsaryova O, Schnurpfeil G, Wöhrle D, Schlettwein D (2008) Fluorinated phthalocyanines as molecular semiconductor thin films. Phys Status Solidi A 205:409–420. https://doi.org/10.1002/pssa.200723391

    Article  CAS  Google Scholar 

  32. Hiller S, Schlettwein D, Armstrong NR, Wöhrle D (1998) Influence of surface reactions and ionization gradients on junction properties of F 16 PcZn. J Mater Chem 8:945–954. https://doi.org/10.1039/a707485i

    Article  CAS  Google Scholar 

  33. Jiang H, Hu P, Ye J, Li Y, Li H, Zhang X, Kloc C (2017) Molecular crystal engineering: tuning organic semiconductor from p-type to n-type by adjusting their Substitutional symmetry. Adv Mater 29:1605053. https://doi.org/10.1002/adma.201605053

    Article  CAS  Google Scholar 

  34. Ogunsipe A, Maree D, Nyokong T (2003) Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct 650: 131–140. https://doi.org/10.1016/S0022-2860(03)00155-8

    Article  CAS  Google Scholar 

  35. Zhao J, Wu W, Sun J, Guo S (2013) Triplet photosensitizers: from molecular design to applications. Chem Soc Rev 42:5323–5351. https://doi.org/10.1039/C3CS35531D

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (project number 19-73-200-79) and employed with the equipment of the Shared Facilities Center of the Institute of Organic Chemistry of the Russian Academy of Sciences.

The authors thank the Joint Supercomputer Center of the Russian Academy of Sciences (Moscow) for providing the resources of the MVS-100 K cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nugzar Z. Mamardashvili.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, O.A., Chizhova, N.V., Rusanov, A.I. et al. Spectral-Fluorescence Properties of Zn(II)-Octaphenyltetraazaporphyrins. J Fluoresc 30, 657–664 (2020). https://doi.org/10.1007/s10895-020-02530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02530-1

Keywords

Navigation