Skip to main content
Log in

A New Schiff Base Based Fluorescent Sensor for Al(III) Based on 2-Hydroxyacetophenone and o-Phenylenediamine

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple Schiff base (L) based on 2-hydroxyacetophenone and o-phenylenediamine was prepared which acts as an effective fluorescent sensor for Al3+ with ca. 9.0 fold enhancement in fluorescence intensity and detection limit 10–4.3 M. L can quite clearly distinguish Al3+ over other metal ions Zn2+, Hg2+, Cd2+, Pb2+, Mn2+, Mg2+, Co2+, Ni2+, Cu2+, Ca2+, K+, Li+, Na+ and Fe3+. Cyclic voltammogram and square wave voltammogram of L shows a significant change on interaction with Al3+. Spectroscopic data and DFT calculations confirm 1:1 interaction between L and Al3+ which is reversible with respect to Na2EDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Goswami S, Paul S, Manna A (2013) FRET based ‘red-switch’ for Al 3+ over ESIPT based 'green-switch'for Zn2+: dual channel detection with live-cell imaging on a dyad platform. RSC Adv 3:10639

    Article  CAS  Google Scholar 

  2. Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol Pharmacol 82:789

    Article  CAS  Google Scholar 

  3. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75

    Article  CAS  Google Scholar 

  4. Altschuler E (1999) Aluminum-containing antacids as a cause of idiopathic Parkinson’s disease. Med Hypotheses 53:22

    Article  CAS  Google Scholar 

  5. Wang B, Xing W, Zhao Y, Deng X (2010a) Effects of chronic aluminum exposure on memory through multiple signal transduction pathways. Environ Toxicol Pharmacol 29:308

    Article  CAS  Google Scholar 

  6. Walton JR (2006) Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neuro Toxicol 27:385

    CAS  Google Scholar 

  7. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neuro Toxicol 23:761

    CAS  Google Scholar 

  8. Witters HE, Puymbroeck SV, Stouthart AJHX, Bonga SEW (1996) Physicochemical changes of aluminium in mixing zones: Mortality and physiological disturbances in brown trout (Salmo trutta L.). Environ Toxicol Chem 15:986

    Article  CAS  Google Scholar 

  9. Wang JL, Zang L, Li YY, You J, Wu P, Zheng SJ (2006) Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots. Ann Bot 97:579

    Article  Google Scholar 

  10. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soil? Mechanism of aluminium tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459

    Article  CAS  Google Scholar 

  11. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315

    Article  CAS  Google Scholar 

  12. Sang H, Liang P, Du D (2008) Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection. J Hazard Mater 154:1127

    Article  CAS  Google Scholar 

  13. de Jesus DS, das Graças Korn M, Ferreira SLC, Carvalho MS (2000) A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy. Spectrochim Acta B 55:389

    Article  Google Scholar 

  14. Abbasi S, Farmany A, Gholivand MB, Naghipour A, Abbasi F, Khani H (2009) Kinetic-spectrophotometry method for determination of ultra trace amounts of aluminum in food samples. Food Chem 116:1019

    Article  CAS  Google Scholar 

  15. Gupta VK, Jain AK, Maheswari G (2007) Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta 72:1469

    Article  CAS  Google Scholar 

  16. Dutta K, Deka RC, Das DK (2014) The first enhanced ring planarity based fluorescent “off-on” sensor for Ca2+ ion. J Lumin 148:325–329

    Article  CAS  Google Scholar 

  17. Das DK, Goswami P, Medhi B (2014) N-benzoate-N′ salicylaldehyde ethynelediamine: a new fluorescent sensor for Zn2+ ion by “off-on” mode. J Fluoresc 145:454–458

    CAS  Google Scholar 

  18. Kumar J, Bhattacharyya P, Das DK (2015a) New duel fluorescent “on–off” and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor. Spectrochim Acta A 138:99

    Article  CAS  Google Scholar 

  19. Gupta VK, Jain AK, Kumawat LK (2014a) Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion Sens. Actuators B Chem 195:98

    Article  CAS  Google Scholar 

  20. Gupta VK, Singh AK, Mergu N (2014b) Antipyrine based Schiff bases as turn-on fluorescent sensors for Al (III) ion. Electrochim Acta 117:405

    Article  CAS  Google Scholar 

  21. Paul S, Manna A, Goswami S (2015) A differentially selective molecular probe for detection of trivalent ions (Al3+, Cr3+ and Fe3+) upon single excitation in mixed aqueous medium. Dalton Trans 44:11805

    Article  CAS  Google Scholar 

  22. Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam S-W, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorg Chem 51:3597

    Article  CAS  Google Scholar 

  23. Wang L et al (2010b) A simple sensitive ESIPT on-off fluorescent sensor for selective detection of Al3+ in water. Biomol Chem 8:3751

    Article  CAS  Google Scholar 

  24. Cramer JC (2004) Essentials of computational chemistry, theories and models, 2nd edn. John Wiley & Sons Ltd, England

    Google Scholar 

  25. Koch WM, Holthausen C (2001) A. Chemist’s Guide to Density Functional Theory, 2nd edn. Wiley-VCH, New York

    Book  Google Scholar 

  26. Fiothais C, Nogueira F, Marques M (eds) (2003) A primer in density functinal theory. Springer-Verlag, Berlin

    Google Scholar 

  27. Cohen AJ, M-Sanchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112:289

    Article  CAS  Google Scholar 

  28. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701

    Article  CAS  Google Scholar 

  29. Kumar J, Sarma MJ, Phukan P, Das DK (2015b) Surfactant dependent pH controlled “off-on”, “off-on-off” and “on-off” fluorescent switches exhibited by N-benzylidenenaphthalen-1-amine. J Fluoresce 25:1431–1435

    Article  CAS  Google Scholar 

  30. Ali SA, Soliman AA, Aboaly MM, Ramadan RM (2002) Chromium, molybdenum and ruthenium complexes of 2-hydroxyacetophenone Schiff bases. J Coord Chem 55(10):1161

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford CT

Download references

Acknowledgements

The authors thank DST, New Delhi for SERB (DST) project No. EMR/2016/001745 and financial support to the Department under FIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Kumar Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharali, B., Talukdar, H., Phukan, P. et al. A New Schiff Base Based Fluorescent Sensor for Al(III) Based on 2-Hydroxyacetophenone and o-Phenylenediamine. J Fluoresc 30, 751–757 (2020). https://doi.org/10.1007/s10895-020-02527-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02527-w

Keywords

Navigation