Skip to main content
Log in

Unusual Fluorescence Quenching-Based Al3+ Sensing by an Imidazolylpiperazine Derivative. β-Cyclodextrin Encapsulation-Assisted Augmented Sensing

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report in this paper an unusual β-cyclodextrin mediated-aluminum (III) ion sensing based on augmented quenching of fluorescence. The fluorescent sensing of metal ions by a new ligand prepared (L = 4-[{4-(1H-imidazol-1-yl)phenyl]imino}methyl]piperazine-1-carboxaldehyde) has been investigated as well as the effect of the supramolecular complex formation with β-CD. In aqueous solution, L shows an increase of fluorescence due to the interaction with β-cyclodextrin with a formation constant of 77 (± 12) M−1. The ROESY NMR spectrum clearly indicates that L is encapsulated by β-CD. Theoretical calculations show the possible structure both of the L-β-CD adduct and of the coordination mode of Al3+ ion to L. In the presence of β-CD, the piperazine adopts a distorted conformation. It leads to an enhanced Al3+ sensing by the compound in its supramolecular complexed form. The lower limit of detection of Al3+ ions is 6.00 × 10−8 mol L−1. This detection limit slightly expands for L in the presence of β-CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jang HJ, Kang JH, Yun D, Kim C (2018) A multi-responsive naphthalimide-based “turn-on” fluorescent chemosensor for sensitive detection of trivalent cations Ga3+, Al3+ and Cr3+. J Fluoresc 28:785–794

  2. Lachowicz JI, Nurchi VM, Crisponi G, Cappai I, Cappai R, Busato M, Melchior A, Tolazzi M, Peana M, Garribba E, Zoroddu MA, Coni P, Pichiri G, Aaseth J (2018) Para-Aminosalicylic acid in the treatment of manganese toxicity. Complexation of Mn2+ with 4-amino-2-hydroxybenzoic acid and its n -acetylated metabolite. New J Chem 42:8035–8049

    CAS  Google Scholar 

  3. Crisponi G, Nurchi VM, Lachowicz JI, Crespo-Alonso M, Zoroddu MA, Peana M (2015) Kill or cure: misuse of chelation therapy for human diseases. Coord Chem Rev 284:278–285

    CAS  Google Scholar 

  4. Crisponi G, Nurchi VM, Faa G, Remelli M (2011) Human diseases related to aluminium overload. Monatsh Chem 142:331–340

    CAS  Google Scholar 

  5. Imadi SR, Waseem S, Kazi AG, Azooz MM, Ahmad P (2015) Aluminum toxicity in plants: an overview. in plant metal interaction: Emerging remediation techniques. Elsevier, Amsterdam, The Netherlands pp 1–20

    Google Scholar 

  6. Chappard D, Bizot P, Mabilleau G, Hubert L (2016) Aluminum and bone: review of new clinical circumstances associated with Al3+ deposition in the calcified matrix of bone. Morphologie 100:95–105

    CAS  PubMed  Google Scholar 

  7. Exley C (2014) What is the risk of aluminium as a neurotoxin? Expert Rev Neurother 14:589–591

    CAS  PubMed  Google Scholar 

  8. Cappai R, Chand K, Lachowicz JI, Chaves S, Gano L, Crisponi G, Nurchi VM, Peana M, Zoroddu MA, Santos MA (2018) A new tripodal-3-hydroxy-4-pyridinone for iron and aluminium sequestration: synthesis, complexation and in vivo studies. New J Chem 42:8050–8061

    CAS  Google Scholar 

  9. Li D, Ma Y, Duan H, Jiang F, Deng W, Ren X (2018) Fluorescent/SERS dual-sensing and imaging of intracellular Zn2+. Anal Chim Acta 14:148–156

    Google Scholar 

  10. Chen S, Yu YL, Wang JH (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26

    CAS  PubMed  Google Scholar 

  11. Li J, Yim D, Jang WD, Yoon J (2017) Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem Soc Rev 28:2437–2458

    CAS  PubMed  Google Scholar 

  12. Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750

    CAS  PubMed  Google Scholar 

  13. Yeung MCL, Yam VWW (2015) Luminescent cation sensors: from host-guest chemistry, supramolecular chemistry to reaction-based mechanisms. Chem Soc Rev 44:4192–4202

    CAS  PubMed  Google Scholar 

  14. Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975

    CAS  PubMed  Google Scholar 

  15. Prochowicz D, Kornowicz A, Lewiński J (2017) Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: fertile landscape for chemistry and materials science. Chem Rev 117:13461–13501

    CAS  PubMed  Google Scholar 

  16. Paulpandi RQ, Ramasamy S, Paulraj MS, Baños FGD, Villora G, Cerón-Carrasco JP, Pérez-Sánchez H, Enoch IVMV (2016) Enhanced Zn 2+ ion-sensing behavior of a benzothiazole derivative on encapsulation by β-cyclodextrin. RSC Adv 6:15670–15677

    CAS  Google Scholar 

  17. Selvan GT, Poomalai S, Ramasamy S, Selvakumar PM, Enoch IVMV, Lanas SG, Melchior A (2018) Differential metal ion sensing by an antipyrine derivative in aqueous and β-cyclodextrin media: selectivity tuning by β-cyclodextrin. Anal Chem 90:13607–13615

    CAS  PubMed  Google Scholar 

  18. Sumithra M, Sivaraj R, Selvan GT, Selvakumar PM, Enoch IVMV (2017) Ca2+ ion sensing by a piperidin-4-one derivative and the effect of β-cyclodextrin complexation on the sensing. J Lumin 185:205–211

    CAS  Google Scholar 

  19. Xu M, Wu S, Zeng F, Yu C (2010) Cyclodextrin supramolecular complex as a water-soluble ratiometric sensor for ferric ion sensing. Langmuir 26:4529–4534

    CAS  PubMed  Google Scholar 

  20. Green TK, Denoroy L, Parrot S (2010) Fluorescence enhancement of a meisenheimer complex of adenosine by cyclodextrin: a thermodynamic and kinetic investigation. J Organomet Chem 75:4048–4055

    CAS  Google Scholar 

  21. Liu P, Sun S, Guo X, Yang X, Huang J, Wang K, Wang Q, Liu J, He L (2015) Competitive host–guest interaction between β-cyclodextrin polymer and pyrene-labeled probes for fluorescence analyses. Anal Chem 87:2665–2671

    CAS  PubMed  Google Scholar 

  22. Sowrirajan C, Yousuf S, Enoch IVMV (2014) The unusual fluorescence quenching of coumarin 314 by β-cyclodextrin and the effect of β-cyclodextrin on its binding with calf thymus DNA. Aust J Chem 67:256–265

    CAS  Google Scholar 

  23. Becke ADA (1993) New mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    CAS  Google Scholar 

  24. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  25. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    CAS  PubMed  Google Scholar 

  26. Veclani D, Melchior A, Tolazzi M, Cerón-Carrasco JP (2018) Using theory to reinterpret the kinetics of monofunctional platinum anticancer drugs: stacking matters. J Am Chem Soc 140:14024–14027

    CAS  PubMed  Google Scholar 

  27. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    CAS  PubMed  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov A F, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian 16, Rev. A.03. Gaussian 16 Rev.A03 Wallingford, CT. 2016

  29. Melchior A, Martínez JM, Pappalardo RR, Sánchez Marcos E (2013) Hydration of cisplatin studied by an effective ab initio pair potential including solute-solvent polarization. J Chem Theory Comput 9:4562–4573

    CAS  PubMed  Google Scholar 

  30. Piccinelli F, Bettinelli M, Melchior A, Grazioli C, Tolazzi M (2015) Structural, optical and sensing properties of novel Eu( III ) complexes with furan- and pyridine-based ligands. Dalton Trans 44:182–192

    CAS  PubMed  Google Scholar 

  31. Melchior A, Tolazzi M, Martínez JM, Pappalardo RR, Sánchez Marcos E (2015) Hydration of two cisplatin aqua-derivatives studied by quantum mechanics and molecular dynamics simulations. J Chem Theory Comput 11:1735–1744

    CAS  PubMed  Google Scholar 

  32. Melchior A, Marcos ES, Pappalardo RR, Martínez JM (2011) Comparative study of the hydrolysis of a third- and a first-generation platinum anticancer complexes. Theor Chem Accounts 128:627–638

    CAS  Google Scholar 

  33. Lakowicz JR (2006) Introduction to fluorescence, 3rd edn. Springer, New York

    Google Scholar 

  34. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  35. Enoch IVMV, Swaminathan M (2005) Dual fluorescence and photoprototropic characteristics of 2-aminodiphenylsulphone-β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem 53:149–154

    CAS  Google Scholar 

  36. Xavier JMC, Chandrasekaran S, Enoch IVMV, Gunasekaran V (2013) Phenylhydrazones of piperidin-4-ones as AND, OR, NOR, NAND, and INH molecular logic gates. Appl Spectrosc 67:1042–1048

    CAS  PubMed  Google Scholar 

  37. Yousuf S, Alex R, Selvakumar PM, Enoch IVMV, Subramanian PS, Sun Y (2015) Picking out logic operations in a naphthalene β-diketone derivative by using molecular encapsulation, controlled protonation, and DNA binding. Chem Open 4:497–508

    CAS  Google Scholar 

  38. Al-Burtomani SKS, Suliman FEO (2017) Inclusion complexes of norepinephrine with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril: experimental and molecular dynamics study. RSC Adv 7:9888–9901

    CAS  Google Scholar 

  39. Quiroga-Campano C, Gómez-Machuca H, Jullian C, De La Fuente J, Pessoa-Mahana H, Saitz C (2014) Study by fluorescence of calix[4] arenes bearing heterocycles with divalent metals: highly selective detection of Pb2+. J Incl Phenom Macrocycl Chem 79:161–169

    CAS  Google Scholar 

  40. Selvan GT, Kumaresan M, Sivaraj R, Enoch IVMV, Selvakumar PM (2016) Isomeric 4-aminoantipyrine derivatives as fluorescent chemosensors of Al3+ ions and their molecular logic behaviour. Sensors Actuators B Chem 229:181–189

    CAS  Google Scholar 

  41. Gupta VK, Jain AK, Shoora SK New “on-off” optical probe based on schiff base responding to al3+ ions: Logic gate application. Sensors Actuators B Chem 219:218–231

    CAS  Google Scholar 

  42. Singhal D, Gupta N, Singh AK (2016) Fluorescent sensor for Al3+ ion in partially aqueous media using julolidine based probe. New J Chem 40:7536–7541

    CAS  Google Scholar 

  43. Sheet SK, Sen B, Thounaojam R, Aguan K, Khatua S (2017) Highly selective light-up Al3+ sensing by a coumarin based Schiff Base probe: subsequent phosphate sensing DNA binding and live cell imaging. J Photochem Photobiol A 332:101–111

    CAS  Google Scholar 

  44. Hariharan C, Vijaysree V, Mishra AK (1997) Quenching of 2,5-diphenyloxazole (PPO) fluorescence by metal ions. J Lumin 75:205–211

    CAS  Google Scholar 

  45. Greb L, Eichhöfer A, Lehn JM (2015) Synthetic molecular motors: thermal N inversion and directional photoinduced C=N bond rotation of camphorquinone imines. Angew Chem Int Ed 54:14345–14348

    CAS  Google Scholar 

  46. Spångberg D, Hermansson K, Lindqvist-Reis P, Jalilehvand F, Sandström M, Persson I (2000) Model extended x-ray absorption fine structure (EXAFS) spectra from molecular dynamics data for Ca2+ and Al3+ aqueous solutions. J Phys Chem B 104:10467–10472

    Google Scholar 

  47. Dau PV, Zhang Z, Gao Y, Parker BF, Dau PD, Gibson JK, Arnold J, Tolazzi M, Melchior A, Rao L (2018) Thermodynamic, structural, and computational investigation on the complexation between UO2+ and amine-functionalized diacetamide ligands in aqueous solution. Inorg Chem 57:2122–2131

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

IVMVE expresses gratitude to DAE-BRNS, India for a financial support (Grant Number: 37(2)/14/17/2018-BRNS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Israel VMV Enoch or Andrea Melchior.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliyamoorthi, K., Maniraj, S., Govindaraj, T.S. et al. Unusual Fluorescence Quenching-Based Al3+ Sensing by an Imidazolylpiperazine Derivative. β-Cyclodextrin Encapsulation-Assisted Augmented Sensing. J Fluoresc 30, 445–453 (2020). https://doi.org/10.1007/s10895-020-02511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02511-4

Keywords

Navigation