Skip to main content
Log in

Differential Interaction of Metal Ions with Gold Nanoclusters and Application in Detection of Cobalt and Cadmium

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Interest in biosensing platforms using protein fluorescent gold nanoclusters (FGNCs) has grown significantly in the past due to the unique optical properties they offer. This study investigates the interaction of metal ions with FGNCs, and the structural modifications brought about by the interaction resulting in fluorescence changes of the cluster and its successful application in the detection of two heavy metals, cobalt and cadmium. The binding of cobalt and cadmium to FGNCs synthesized from BSA significantly altered the secondary structure of the protein, causing a change in its hydrophobicity. It also resulted in a change in fluorescence properties of FGNCs by intersystem crossing (ICT) and fluorescence resonance energy transfer (FRET). Cobalt and cadmium could successfully be detected in the range of 5–165 ng/mL (R2 = 0.95) and 20–1000 ng/ mL (R2 = 0.91), respectively, with appreciable sensitivity. The principle was also applied for the detection of Vitamin B12 in commercially available ampoules, validating the proposed method.

Proposed detection method of cadmium and cobalt using FGNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen LY, Wang CW, Yuan Z, H.T. (2015) Chang, fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229. https://doi.org/10.1021/ac503636j

    Article  CAS  PubMed  Google Scholar 

  2. Chaudhari K, Baksi A, Pradeep T (2012) Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nanotechnol Rev 3:1–16. https://doi.org/10.3402/nano.v3i0.14767

    Article  CAS  Google Scholar 

  3. Xu Y, Sherwood J, Qin Y, Crowley D, Bonizzoni M, Bao Y (2014) The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale. 6:1515–1524. https://doi.org/10.1039/c3nr06040c

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Wang Y, Wang C, Li W, Zhou H, Jiao H, Lin Q, Yu C (2013) Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. J Colloid Interface Sci 396:63–68. https://doi.org/10.1016/j.jcis.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  5. Fernández TD, Pearson JR, Leal MP, Torres MJ, Blanca M, Mayorga C, Guével XL (2015) Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials. 43:1–12. https://doi.org/10.1016/j.biomaterials.2014.11.045

    Article  CAS  PubMed  Google Scholar 

  6. Zhang XD, Wu D, Shen X, Liu PX, Fan FY, Fan SJ (2012) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 33:4628–4638. https://doi.org/10.1016/j.biomaterials.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  7. Volden S, Lystvet SM, Halskau Ø, Glomm WR (2012) Generally applicable procedure for in situ formation of fluorescent protein-gold nanoconstructs. RSC Adv:11704–11711. https://doi.org/10.1039/c2ra21931j

    Article  CAS  Google Scholar 

  8. Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196. https://doi.org/10.1021/ac1031447

    Article  CAS  PubMed  Google Scholar 

  9. Tay CY, Yu Y, Setyawati MI, Xie J, Leong DT (2014) Presentation matters: identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. Nano Res 7:805–815. https://doi.org/10.1007/s12274-014-0441-z

    Article  CAS  Google Scholar 

  10. Gao S, Chen D, Li Q, Ye J, Jiang H, Amatore C, Wang X (2014) Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Sci Rep 4:4384. https://doi.org/10.1038/srep04384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 16:574–583. https://doi.org/10.1016/j.molmed.2010.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) Ph-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 21:3508–3515. https://doi.org/10.1002/adfm.201100886

    Article  CAS  Google Scholar 

  13. Liu CL, Wu HT, Hsiao YH, Lai CW, Shih CW, Peng YK et al (2011) Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew Chem Int Ed 50:7056–7060. https://doi.org/10.1002/anie.201100299

    Article  CAS  Google Scholar 

  14. Lee H, Lee K, Kim IK, Park TG (2009) Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species. Adv Funct Mater 19:1884–1890. https://doi.org/10.1002/adfm.200801838

    Article  CAS  Google Scholar 

  15. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889. https://doi.org/10.1021/ja806804u

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Ai K, Cheng X, Huo L, Lu L (2010) Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv Funct Mater 20:951–956. https://doi.org/10.1002/adfm.200902062

    Article  CAS  Google Scholar 

  17. Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9:132–157. https://doi.org/10.1016/j.nantod.2014.02.010

    Article  CAS  Google Scholar 

  18. Lin Y, Tseng W (2010) Ultrasensitive sensing of Hg 2+ and CH 3 Hg + based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem 82:9194–9200

    Article  CAS  Google Scholar 

  19. Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136:933–940. https://doi.org/10.1039/c0an00424c

    Article  CAS  PubMed  Google Scholar 

  20. Xia X, Long Y, Wang J (2013) Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal Chim Acta 772:81–86. https://doi.org/10.1016/j.aca.2013.02.025

    Article  CAS  PubMed  Google Scholar 

  21. Venkatesh V, Shukla A, Sivakumar S, Verma S (2014) Purine-stabilized green fluorescent gold nanoclusters for cell nuclei imaging applications. ACS Appl Mater Interfaces 6:2185–2191. https://doi.org/10.1021/am405345h

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Chen J, Irudayaraj J (2011) Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2 + breast cancer. ACS Nano 5:9718–9725. https://doi.org/10.1021/nn2032177

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Wang C, Yuan Z, Chang H (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87(1):216–229. https://doi.org/10.1021/ac503636j

    Article  CAS  PubMed  Google Scholar 

  24. Wang HH, Lin CAJ, Lee CH, Lin YC, Tseng YM, Hsieh CL, Shen JL, Chan WH (2011) Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells. ACS Nano 5:4337–4344. https://doi.org/10.1021/nn102752a

    Article  CAS  PubMed  Google Scholar 

  25. Hu L, Deng L, Alsaiari S, Zhang D, Khashab NM (2014) “Light-on” sensing of antioxidants using gold nanoclusters. Anal Chem 86:4989–4994. https://doi.org/10.1021/ac500528m

    Article  CAS  PubMed  Google Scholar 

  26. Hu D, Sheng Z, Fang S, Wang Y, Gao D, Zhang P et al (2014) Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis. Theranostics 4:142–153. https://doi.org/10.7150/thno.7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980. https://doi.org/10.1021/la060093j

    Article  CAS  PubMed  Google Scholar 

  28. Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32:1–12. https://doi.org/10.1007/s10653-009-9273-2

    Article  CAS  PubMed  Google Scholar 

  29. S.I. Report, Cadmium risks to freshwater life : derivation and validation of low-effect criteria values using laboratory and field studies scientific investigations report 2006–5245, Quality. (2010)

  30. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22. https://doi.org/10.1186/1745-6673-1-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. Chem Commun (Camb) 46:961–963. https://doi.org/10.1039/b920748a

    Article  CAS  Google Scholar 

  32. Wang ZX, Guo YX, Ding SN (2015) Fluorometric determination of cadmium (II) and mercury(II) using nanoclusters consisting of a gold-nickel alloy. Microchim Acta 182:2223–2231. https://doi.org/10.1007/s00604-015-1563-z

    Article  CAS  Google Scholar 

  33. Bal W, Christodoulou J, Sadler PJ, Tucker A (1998) Multi-metal binding site of serum albumin. J Inorg Biochem 70:33–39. https://doi.org/10.1016/S0162-0134(98)00010-5

    Article  CAS  PubMed  Google Scholar 

  34. Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y (2010) Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg(2+) sensor. Analyst. 135:1406–1410. https://doi.org/10.1039/c0an00046a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu H, Xu Z, Liu X, Xi P, Zeng Z (2009) Analysis of binding interaction between bovine serum albumin and the cobalt (II) complex with salicylaldehyde-2-phenylquinoline-4-carboylhydrazone. Chem Pharm Bull (Tokyo) 57:1237–1242. https://doi.org/10.1248/cpb.57.1237

    Article  CAS  Google Scholar 

  36. Sokołowska M, Wszelaka-Rylik M, Poznański J, Bal W (2009) Spectroscopic and thermodynamic determination of three distinct binding sites for Co (II) ions in human serum albumin. J Inorg Biochem 103:1005–1013. https://doi.org/10.1016/j.jinorgbio.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  37. Liang H, Huang J, Tu C, Zhang M, Zhou Y, Shen P (2001) The subsequent effect of interaction between Co 2 1 and human serum albumin or bovine serum albumin. J Inorg Biochem 85:167–171

    Article  CAS  Google Scholar 

  38. Qu SS, Liu Y, Wang TZ, Gao WY (2002) Thermodynamics of binding of cadmium to bovine serum albumin. Chemosphere. 46:1211–1214. https://doi.org/10.1016/S0045-6535(01)00213-2

    Article  CAS  PubMed  Google Scholar 

  39. Andersen O (1983) Chelation of cadmium. Environ Health Perspect 54:249–266. https://doi.org/10.1289/ehp.8454249

    Article  Google Scholar 

  40. Martins E, Drakenberg T (1982) Cadmium (II), Zinc (II), and Copper (II) ions binding to bovine serum albumin. A 113Cd NMR study. Inorg Chim Acta 67:71–74

    Article  CAS  Google Scholar 

  41. Cheng T, Xu Y, Zhang S, Zhu W, Qian X, Duan L (2008) A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell. J Am Chem Soc 130:16160–16161. https://doi.org/10.1021/ja806928n

    Article  CAS  PubMed  Google Scholar 

  42. Williams NJ, Gan W, Reibenspies JH, Hancock RD (2009) Possible steric control of the relative strength of chelation enhanced fluorescence for zinc (II) compared to cadmium (II): metal ion complexing properties of tris(2-quinolylmethyl) amine, a crystallographic, UV-visible, and fluorometric study. Inorg Chem 48:1407–1415. https://doi.org/10.1021/ic801403s

    Article  CAS  PubMed  Google Scholar 

  43. Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J et al (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 129:1500–1501. https://doi.org/10.1021/ja0643319

    Article  CAS  PubMed  Google Scholar 

  44. Yang Y, Cheng T, Zhu W, Xu Y, Qian X (2011) Highly selective and sensitive near-infrared fluorescent sensors for cadmium in aqueous solution. Org Lett 13:264–267. https://doi.org/10.1021/ol102692p

    Article  CAS  PubMed  Google Scholar 

  45. Huang C-C, Yang Z, Lee K-H, Chang H-T (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew Chem 119:6948–6952. https://doi.org/10.1002/ange.200700803

    Article  Google Scholar 

  46. Wei H, Wang Z, Zhang J, House S, Gao Y-G, Yang L, Robinson H, Tan LH, Xing H, Hou C, Robertson IM (2011) Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat Nanotechnol 6:93–97. https://doi.org/10.1038/nnano.2010.280

    Article  CAS  PubMed  Google Scholar 

  47. Russell BA, Kubiak-Ossowska K, Mulheran PA, Birch DJS, Chen Y (2015) Locating the nucleation sites for protein encapsulated gold nanoclusters: a molecular dynamics and fluorescence study. Phys Chem Chem Phys 17:21935–21941. https://doi.org/10.1039/c5cp02380g

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Zhu JJ, Xu K (2014) Fluorescent metal nanoclusters: from synthesis to applications. TrAC - Trends Anal Chem 58:90–98. https://doi.org/10.1016/j.trac.2014.02.011

    Article  CAS  Google Scholar 

  49. Sadler PJ, Tucker A, Viles JH (1994) Involvement of a lysine residue in the N-terminal Ni2+ and Cu2+ binding site of serum albumins. Comparison with Co2+, Cd2+ and Al3+. Eur J Biochem 220:193–200. https://doi.org/10.1111/j.1432-1033.1994.tb18614.x

    Article  CAS  PubMed  Google Scholar 

  50. Zhang YZ, Li HR, Dai J, Chen WJ, Zhang J, Liu Y (2010) Spectroscopic studies on the binding of cobalt (II) 1,10-Phenanthroline complex to bovine serum albumin. Biol Trace Elem Res 135:136–152. https://doi.org/10.1007/s12011-009-8502-y

    Article  CAS  PubMed  Google Scholar 

  51. Yifei K, Chen J, Gao F, Brydson R, Johnson B, Heath G, Zhang Y, Wu L, Zhou D (2013) Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale 5(3):1009–1017. https://doi.org/10.1039/C2NR32760K

    Article  Google Scholar 

  52. Moriyama Y, Ohta D, Hachiya K, Mitsui Y, Takeda K (1996) Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins. J Protein Chem 15:265–272. https://doi.org/10.1007/BF01887115

    Article  CAS  PubMed  Google Scholar 

  53. Ghisaidoobe ABT, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on förster resonance energy transfer techniques. Int J Mol Sci 15:22518–22538. https://doi.org/10.3390/ijms151222518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109. https://doi.org/10.1016/S0006-3495(01)76183-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hospes M, Hendriks J, Hellingwerf KJ (2013) Tryptophan fluorescence as a reporter for structural changes in photoactive yellow protein elicited by photo-activation. Photochem Photobiol Sci 12:479–488. https://doi.org/10.1039/C2PP25222H

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Yang X, Wang J, Xu C, Zhang W, Liu R, Zong W (2016) Probing the binding interaction between cadmium (II) chloride and lysozyme. New J Chem 40(4):3738–3746

    Article  CAS  Google Scholar 

  57. Raut S, Chib R, Butler S, Borejdo J, Gryczynski Z, Gryczynski I (2014) Evidence of energy transfer from tryptophan to BSA/HSA protected gold nanoclusters. Methods Appl Fluores 2:35004. https://doi.org/10.1088/2050-6120/2/3/035004

    Article  CAS  Google Scholar 

  58. Vinayaka AC, Thakur MS (2011) Photoabsorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight into QD-biomolecular interactions. Bioconjug Chem 22:968–975. https://doi.org/10.1021/bc200034a

    Article  CAS  PubMed  Google Scholar 

  59. Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45. https://doi.org/10.1039/b813919a

    Article  CAS  PubMed  Google Scholar 

  60. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638. https://doi.org/10.1038/nmat961

    Article  CAS  PubMed  Google Scholar 

  61. Chong EZ, Matthews DR, Summers HD, Njoh KL, Errington RJ, Smith PJ (2007) Development of FRET-based assays in the far-red using CdTe quantum dots. Biomed Res Int. https://doi.org/10.1155/2007/54169

    Article  Google Scholar 

  62. Patel RC, Lange DC, Patel YC (2002) Photobleaching fluorescence resonance energy transfer reveals ligand-induced oligomer formation of human somatostatin receptor subtypes. Methods. 27:340–348. https://doi.org/10.1016/S1046-2023(02)00092-0

    Article  CAS  PubMed  Google Scholar 

  63. Wang S, Liu P, Qin Y, Chen Z, Shen J (2016) Rapid synthesis of protein conjugated gold nanoclusters and their application in tea polyphenol sensing. Sensors Actuators B Chem 223:178–185. https://doi.org/10.1016/j.snb.2015.09.058

    Article  CAS  Google Scholar 

  64. Dieaconu M, Loanid A, Iftimie S, Antohe S (2012) UV-absorption mechanisms of Ni2+-binding bovine serum albumin. Dig J Nanomater Biostruct 7:1125–1137

    Google Scholar 

  65. Shaw AK, Pal SK (2008) Spectroscopic studies on the effect of temperature on pH-induced folded states of human serum albumin. J Photochem Photobiol B Biol 90:69–77. https://doi.org/10.1016/j.jphotobiol.2007.11.003

    Article  CAS  Google Scholar 

  66. Selvakumar LS, Ragavan KV, Abhijith KS, Thakur MS (2013) Immunodipstick based gold nanosensor for vitamin B12 in fruit and energy drinks. Anal Methods 5:1806. https://doi.org/10.1039/c3ay26320g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Director CSIR-CFTRI for providing necessary facilities for the work. Mr. Akshath U. S. acknowledges the Indian Council of Medical Research (ICMR) for providing senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveena Bhatt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akshath, U.S., Bhatt, P. & Singh, S.A. Differential Interaction of Metal Ions with Gold Nanoclusters and Application in Detection of Cobalt and Cadmium. J Fluoresc 30, 537–545 (2020). https://doi.org/10.1007/s10895-020-02509-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02509-y

Keywords

Navigation