Skip to main content
Log in

Red Emitting Hydroxybenzazole (HBX) Based Azo Dyes: Linear and Non Linear Optical Properties, Optical Limiting, Z Scan Analysis with DFT Assessments

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein, we report the hydroxybenzazole (HBX) containing azo dyes for “linear and non-linear optical” (NLO) applications. These bi-heterocyclic dyes have HBX scaffold (decorated with ESIPT core) and connected to another thiazole moietiy through azo bond. In DMF and DMSO, dyes are “emissive in yellow-red region” and “large Stokes shift” in the range of 62–121 nm were observed. “Nonlinear absorptive coefficient” (β), “nonlinear refractive index” (ƞ2), “third order non-linear optical susceptibility” (χ3) in DMSO, ethanol and methanol were calculated using simple and effective “Z-scan technique” having “Nd: YAG laser” at 532 nm wavelength. 4.46 × 10−13 (e.s.u.) was the highest (χ3) was observed in DMSO among all the dyes. Optical Limiting (OL) values are in the range of 7.61–19.06 J cm−2 in solvents. Thermo Gravimetric Analysis (TGA) supports that, these compounds are useful for numerous high-temperature practices in the construction of electronic as well as optical devices. Band gap was calculated by CV as well as by DFT in acetonitrile. The same trend was observed when these HOMO-LUMO gaps were correlated in between CV and DFT. To gain more insights into structural parameters, molecular geometries were optimized at “B3LYP-6-311 + G (d,p)” level of theory. Further, “Molecular Electrostatic Potential” (MEP), “Frontier Molecular Orbitals” (FMO) were presented using “Density Functional Theory (DFT)”. Global hybrid functional (B3LYP, BHandHLYP) and range separated hybrid functionals (RSH) i.e. CAM-B3LYP, ωB97, ωB97X, and ωB97XD were used to calculate linear and NLO properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu J, Yang Y, Liu X, Zhen Z (2015) Physical attachment of NLO chromophores to polymers for great improvement of long-term stability. Mater Lett 142:87–89. https://doi.org/10.1016/j.matlet.2014.11.146

    Article  CAS  Google Scholar 

  2. Thakare SS, Sreenath MC, Chitrambalam S et al (2017) Non-linear optical study of BODIPY-benzimidazole conjugate by solvatochromic , Z-scan and theoretical methods. Opt Mater (Amst) 64:453–460. https://doi.org/10.1016/j.optmat.2017.01.020

    Article  CAS  Google Scholar 

  3. Dalton LR, Sullivan PA, Bale DH (2010) Electric field poled organic electro-optic materials : state of the art and future prospects. 25–55

  4. Tathe AB, Sekar N (2016) Red emitting NLOphoric 3-styryl coumarins: experimental and computational studies. Opt Mater (Amst). https://doi.org/10.1016/j.optmat.2015.11.031

  5. Ch. Bosshard, J. Hulliger, M. Florsheimer PG (2001) Organic nonlinear optical materials

  6. Erande Y, Kothavale S, Sreenath MC et al (2018) Dyes and Pigments Triphenylamine derived coumarin chalcones and their red emitting OBO di fl uoride complexes : Synthesis , photophysical and NLO property study. Dyes Pigments 148:474–491. https://doi.org/10.1016/j.dyepig.2017.09.045

    Article  CAS  Google Scholar 

  7. Optical N (1965) Calculation of nonlinear Optical susceptibilities diagrammatic perturbation theory. Rev Mod Phys 37:1–18. https://doi.org/10.1103/RevModPhys.37.1

    Article  Google Scholar 

  8. Oudar JL (1977) Optical nonlinearities of conjugated molecules . Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457. https://doi.org/10.1063/1.434888

    Article  CAS  Google Scholar 

  9. Oudar JL, Person HLE (1975) Second-order polarizabilities of some aromatic molecules. Opt Commun 15:258–262. https://doi.org/10.1016/0030-4018(75)90298-9

    Article  CAS  Google Scholar 

  10. Mallah RR, Mohbiya DR, Sreenath MC et al (2018) Fluorescent meso- benzyl curcuminoid boron complex : Synthesis , photophysics , DFT and NLO study. Opt Mater (Amst) 84:786–794. https://doi.org/10.1016/j.optmat.2018.08.012

    Article  CAS  Google Scholar 

  11. Kadam MML, Patil D, Sekar N (2018) 4- ( Diethylamino ) salicylaldehyde based fl uorescent Salen ligand with red- shifted emission – a facile synthesis and DFT investigation. J Lumin 204:354–367. https://doi.org/10.1016/j.jlumin.2018.08.040

    Article  CAS  Google Scholar 

  12. Liu RSH, Asato AE (2003) Tuning the color and excited state properties of the azulenic chromophore : NIR absorbing pigments and materials. J Photochem Photobiol C: Photochem Rev 4:179–194. https://doi.org/10.1016/j.jphotochemrev.2003.09.001

    Article  CAS  Google Scholar 

  13. Calvete MJF (2012) Near-infrared absorbing organic materials with nonlinear transmission properties. Int Rev Phys Chem 31:319–366. https://doi.org/10.1080/0144235X.2012.713210

    Article  CAS  Google Scholar 

  14. Lu H, Mack J, Shen Z, Lu H (2014) Structural modification strategies for the rational design of red / NIR region BODIPYs †. Chem Soc Rev 43:4778–4823. https://doi.org/10.1039/c4cs00030g

    Article  CAS  PubMed  Google Scholar 

  15. Shreykar MR, Sekar N (2017) NLOphoric donor-rigidi fi ed ESIPT dyes – Synthesis , pH study , solvatochromism and DFT insights. J Lumin 192:343–358. https://doi.org/10.1016/j.jlumin.2017.06.061

    Article  CAS  Google Scholar 

  16. Chen W, Wright BD, Pang Y (2012) Rational design of a NIR-emitting Pd ( II ) sensor via oxidative cyclization to form a benzoxazole ring. ChemComm:3824–3826. https://doi.org/10.1039/c2cc30240c

  17. Sobus J, Allison I, Adachi C, Namdas EB (2018) Low amplified spontaneous emission threshold and efficient electroluminescence from a Carbazole Derivatized excited-state Intramolecular proton transfer dye. ACS Photonics 5:4447–4455. https://doi.org/10.1021/acsphotonics.8b00907

    Article  CAS  Google Scholar 

  18. Wu F, Ma L, Zhang S et al (2012) Two-photon-induced intramolecular excited-state proton transfer process and nonlinear optical properties of HBI in ethanol solution. Chem Phys Lett 519–520:141–144. https://doi.org/10.1016/j.cplett.2011.11.026

    Article  CAS  Google Scholar 

  19. Shang X, Tang G, Zhang G et al (1998) Optical nonlinearities and transient dynamics of 2- ( 2 Ј -hydroxyphenyl ) benzoxazole studied by single-beam and time-resolved two-color Z-scan techniques. J Opt Soc Am B 15:854–862. https://doi.org/10.1364/JOSAB.15.000854

    Article  CAS  Google Scholar 

  20. Shreykar MR, Sekar N (2017) Coumarin-Pyrazole hybrid with red shifted ESIPT emission and AIE characteristics - a comprehensive study. J Fluoresc 27:1687–1707. https://doi.org/10.1007/s10895-017-2106-2

    Article  CAS  PubMed  Google Scholar 

  21. Mishra VR, Ghanavatkar CW, Qureshi SI et al (2019) Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput Biol Chem 78:330–337. https://doi.org/10.1016/j.compbiolchem.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Mishra VR, Ghanavatkar CW, Sekar N (2019) ESIPT clubbed azo dyes as deep red emitting fluorescent molecular rotors: Photophysical properties, pH study, viscosity sensitivity, and DFT studies. J Lumin 215:116689. https://doi.org/10.1016/j.jlumin.2019.116689

    Article  CAS  Google Scholar 

  23. Mishra VR, Ghanavatkar CW, Sekar N (2019) UV protective heterocyclic disperse azo dyes: spectral properties, dyeing, potent antibacterial activity on dyed fabric and comparative computational study. Spectrochim Acta - Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2019.117353

  24. Bhalekar SB, Kothavale S, Sekar N (2019) Coumarin and hydroxyl decorated viscosity sensitive Triphenylamine derivatives: synthesis, Photophysical properties, viscosity sensitivity, TD-DFT, and NLO properties. ChemistrySelect 4:12512–12523. https://doi.org/10.1002/slct.201903247

    Article  CAS  Google Scholar 

  25. Sreenath MC, Hubert Joe I, Rastogi VK (2018) Experimental and theoretical investigation of third-order nonlinear optical properties of azo dye 1-(2, 5-Dimethoxy-phenylazo)-naphthalen-2-ol by Z-scan technique and quantum chemical computations. Dyes Pigments 157:163–178. https://doi.org/10.1016/j.dyepig.2018.04.044

    Article  CAS  Google Scholar 

  26. Erande Y, Kothavale S, Sreenath MC et al (2017) NLOphoric multichromophoric auxiliary methoxy aided triphenylamine D-π-A chromophores – spectroscopic and computational studies. Opt Mater (Amst) 73:602–616. https://doi.org/10.1016/j.optmat.2017.09.017

    Article  CAS  Google Scholar 

  27. Ramugade SH, Warde US, Sekar N (2019) Azo dyes with ESIPT core for textile applications and DFT study. Dyes Pigments 170:107626. https://doi.org/10.1016/j.dyepig.2019.107626

    Article  CAS  Google Scholar 

  28. Bhide R, Jadhav AG, Sekar N (2016) Light fast monoazo dyes with an inbuilt photostabilizing unit: synthesis and computational studies. Fibers Polym 17:349–357. https://doi.org/10.1007/s12221-016-5717-3

    Article  CAS  Google Scholar 

  29. Ayare NN, Ghanavatkar CW, Sreenath MC et al (2020) Z-scan and DFT approach for investigating the NLO properties of imidazole fused anthraquinone dyes. J Photochem Photobiol A Chem 390:112327. https://doi.org/10.1016/j.jphotochem.2019.112327

    Article  CAS  Google Scholar 

  30. Jacquemin D, Perpete EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42:326–334. https://doi.org/10.1021/ar800163d

    Article  CAS  PubMed  Google Scholar 

  31. Deglmann P, Schäfer A, Lennartz C (2015) Application of quantum calculations in the chemical industry - an overview. Int J Quantum Chem 115:107–136. https://doi.org/10.1002/qua.24811

    Article  CAS  Google Scholar 

  32. Arı H, Büyükmumcu Z (2017) Comparison of DFT functionals for prediction of band gap of conjugated polymers and effect of HF exchange term percentage and basis set on the performance. Comput Mater Sci 138:70–76. https://doi.org/10.1016/j.commatsci.2017.06.012

    Article  CAS  Google Scholar 

  33. Garza AJ, Wazzan NA, Asiri AM, Scuseria GE (2014) Can short- and middle-range hybrids describe the hyperpolarizabilities of long-range charge-transfer compounds? J Phys Chem A 118:11787–11796. https://doi.org/10.1021/jp510062b

    Article  CAS  PubMed  Google Scholar 

  34. Zouaoui-Rabah M, Sekkal-Rahal M, Djilani-Kobibi F et al (2016) Performance of hybrid DFT compared to MP2 methods in calculating nonlinear optical properties of divinylpyrene derivative molecules. J Phys Chem A 120:8843–8852. https://doi.org/10.1021/acs.jpca.6b08040

    Article  CAS  PubMed  Google Scholar 

  35. Erande Y, Sreenath MC, Chitrambalam S et al (2017) Spectroscopic, DFT and Z-scan supported investigation of dicyanoisophorone based push-pull NLOphoric styryl dyes. Opt Mater (Amst) 66:494–511. https://doi.org/10.1016/j.optmat.2017.03.005

    Article  CAS  Google Scholar 

  36. Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112:289–320. https://doi.org/10.1021/cr200107z

    Article  CAS  PubMed  Google Scholar 

  37. Garza AJ, Osman OI, Wazzan NA et al (2014) Prediction of the linear and nonlinear optical properties of tetrahydronaphthalone derivatives via long-range corrected hybrid functionals. Mol Phys 112:3165–3172. https://doi.org/10.1080/00268976.2014.934312

    Article  CAS  Google Scholar 

  38. Altürk S, Avcı D, Tamer Ö, Atalay Y (2017) Comparison of different hybrid DFT methods on structural, spectroscopic, electronic and NLO parameters for a potential NLO material. Comput Theor Chem 1100:34–45. https://doi.org/10.1016/j.comptc.2016.12.007

    Article  CAS  Google Scholar 

  39. Benassi E, Egidi F, Barone V (2015) General strategy for computing nonlinear optical properties of large neutral and cationic organic chromophores in solution. J Phys Chem B 119:3155–3173. https://doi.org/10.1021/jp512342y

    Article  CAS  PubMed  Google Scholar 

  40. Johnson LE, Dalton LR, Robinson BH (2014) Optimizing calculations of electronic excitations and relative hyperpolarizabilities of electrooptic chromophores. Acc Chem Res 47:3258–3265. https://doi.org/10.1021/ar5000727

    Article  CAS  PubMed  Google Scholar 

  41. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  42. Seferoğlu N, Toprakçıoğlu G (2019) Detailed theoretical characterization of azo chromophores containing dicyanomethylene acceptor and various coupling components by DFT. J Mol Struct 1181:360–372. https://doi.org/10.1016/j.molstruc.2018.12.080

    Article  CAS  Google Scholar 

  43. Katariya SB, Patil D, Rhyman L et al (2017) Triphenylamine-based fluorescent NLO phores with ICT characteristics: Solvatochromic and theoretical study. J Mol Struct 1150:493–506. https://doi.org/10.1016/j.molstruc.2017.08.084

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors (Chaitannya W. Ghanavatkar and Virendra R. Mishra) are grateful to PSA (Principle Scientific Advisor, Government of India). For JRF and financial support, Suryapratap Sharma is thankful to CSIR India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekar Nagaiyan Nethi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanavatkar, C.W., Mishra, V.R., Sharma, S. et al. Red Emitting Hydroxybenzazole (HBX) Based Azo Dyes: Linear and Non Linear Optical Properties, Optical Limiting, Z Scan Analysis with DFT Assessments. J Fluoresc 30, 335–346 (2020). https://doi.org/10.1007/s10895-020-02493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02493-3

Keywords

Navigation