Skip to main content
Log in

A Simple and Cost Effective Turn off Fluorescence Sensor for Biliverdin and Bilirubin Based on L-Cysteine Modulated Copper Nanoclusters

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The present article reports the efficiency of L-cysteine modulated copper nanoclusters (L-cys-CuNCs) as a fluorescent probe for the selective determination of naturally occurring bile pigments biliverdin (BVD) and bilirubin (BLR). These pigments were found to quench the fluorescence of L-cys-CuNCs through static processes. Under optimized conditions, the proposed strategy permitted the quantification of BVD and BLR in the range 4.00 × 10−5 to 5.00 × 10−7M and 1.00×10−5 to 1.00×10−6 M respectively with limits of detection 2.33 × 10−7M and 2.29 × 10−7 M. The practical utility of the developed sensor have been investigated in spiked blood and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novotna P, Kralik F, Urbanova M (2015) Chiral recognition of bilirubin and biliverdin in liposomes and micelles. Biophys Chem 205:41–50. https://doi.org/10.1016/j.bpc.2015.06.001

    Article  PubMed  CAS  Google Scholar 

  2. Martelanc M, Ziberna L, Passamonti S, Franko M (2016) Application of high-performance liquid chromatography combined with ultra-sensitive thermal lens spectrometric detection for simultaneous biliverdin and bilirubin assessment at trace levels in human serum. Talanta 154:92–98. https://doi.org/10.1016/j.talanta.2016.03.053

    Article  PubMed  CAS  Google Scholar 

  3. Adeosun SO, Gordon DM, Weeks MF, Moore KH, Hall JE, Hinds TD, Stec DE (2018) Loss of biliverdin reductase-a promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. Am J Physiol Ren Physiol 315:F323–F331. https://doi.org/10.1152/ajprenal.00495.2017

    Article  CAS  Google Scholar 

  4. Helepas S, Hamchand R, Lindeyer SED, Bruckner C (2017) Isolation of Biliverdin IX a, as its dimethyl ester, from emu egg shell. J Chem Educ 94:1533–1537. https://doi.org/10.1021/acs.jchemed.7b00449

    Article  CAS  Google Scholar 

  5. Yan D, Domes C, Domes R, Frosch T, Popp J, Pletzb MW, Frosch T (2018) Fiber enhanced raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia. Analyst 121:6104–6115. https://doi.org/10.1039/C6AN01670G

    Article  Google Scholar 

  6. Berlec A, Strukelj B (2014) A high-throughput biliverdin assay using infrared fluorescence. J Vet Diagn Investig 26:521–526. https://doi.org/10.1177/1040638714535403

    Article  CAS  Google Scholar 

  7. Gafvels M, Holmstrom P, Somell A, Sjovall F, Svensson J, Stahle L, Broome U, Stal P (2009) A novel mutation in the biliverdin reductase-a gene combined with liver cirrhosis results in hyperbiliverdinaemia (green jaundice). Liver Int 29:1116–1124. https://doi.org/10.1111/j.1478-3231.2009.02029.x

    Article  PubMed  CAS  Google Scholar 

  8. Abha K, Nebu J, Anjali Devi JS, Aparna RS, Anjana RR, Aswathy AO, George S (2019) Photoluminescence sensing of bilirubin in human serum using L-cysteine tailored manganese doped zinc sulphide quantum dots. Sens Actutor B-Chem 282:300–308. https://doi.org/10.1016/j.snb.2018.11.063

    Article  CAS  Google Scholar 

  9. Li X, Rosenzweig Z (1997) A fiber optic sensor for rapid analysis of bilirubin in serum. Anal Chim Acta 353:263–273. https://doi.org/10.1016/S0003-2670(97)87785-9

    Article  CAS  Google Scholar 

  10. Jayasree M, Aparna RS, Anjana RR, Anjali Devi JS, John N, Abha K, Manikandan A, George S (2018) Fluorescence turn on detection of bilirubin using Fe(III) modulated BSA stabilized copper nanocluster; a mechanistic perception. Anal Chim Acta 1031:152–160. https://doi.org/10.1016/j.aca.2018.05.026

    Article  PubMed  CAS  Google Scholar 

  11. Aparna RS, Anjali devi JS, John N, Abha K, Syamchand SS, George S (2018) Blue emitting copper nanoclusters as colorimetric and fluorescence probe for the selective detection of bilirubin. Spectrochim Acta A 199:123–129. https://doi.org/10.1016/j.saa.2018.03.045

    Article  CAS  Google Scholar 

  12. Knobloch E, Mandys F, Hodr R (1988) Study of the mechanism of the photochemical oxidation of bilirubin by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 428:255–263. https://doi.org/10.1016/S0378-4347(00)83916-X

    Article  CAS  Google Scholar 

  13. Cyriac ST, Sivasankaran U, Kumar KG (2018) Biopolymer based electrochemical sensor for ponceau 4R: an insight into electrochemical kinetics. J Elctrochem Soc 165:B746–B752. https://doi.org/10.1149/2.0901814jes

    Article  CAS  Google Scholar 

  14. Wei Y, Li J, Dong C, Shuang S, Liu D, Huie CW (2006) Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy. Talanta 70:377–382. https://doi.org/10.1016/j.talanta.2006.02.052

    Article  PubMed  CAS  Google Scholar 

  15. Hua X, Liua T, Zhuanga Y, Wanga W, Lia Y, Fanb W, Huanga Y (2016) Recent advances in the analytical applications of copper nanoclusters. Trends Anal Chem 77:66–75. https://doi.org/10.1016/j.trac.2015.12.013

    Article  CAS  Google Scholar 

  16. Yang X, Feng Y, Zhu S, Luo Y, Zhuo Y, Dou Y (2014) One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution. Anal Chim Acta 847:49–54. https://doi.org/10.1016/j.aca.2014.07.019

    Article  PubMed  CAS  Google Scholar 

  17. Qing T, Zhang K, Qing Z, Wang X, Long C, Zhang P, Hu H, Feng B (2019) Recent progress in copper nano-cluster based fluorescent probing: a review. Microchim Acta 186:1–20. https://doi.org/10.1007/s00604-019-3747-4

    Article  CAS  Google Scholar 

  18. Zhong Y, Zhu J, Wang Q, He Y, Ge Y, Song C (2015) Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper(II) ion. Microchim Acta 182:909–915. https://doi.org/10.1007/s00604-014-1407-2

    Article  CAS  Google Scholar 

  19. Menon S, Kumar KG (2017) Fluorescence immunosensing of insulin via protein functionalized gold nanoclusters. J Fluoresc 27:1541–1546. https://doi.org/10.1007/s10895-017-2093-3

    Article  PubMed  CAS  Google Scholar 

  20. Yuan X, Tay Y, Dou X, Luo Z, Leong DT, Xie J (2013) Glutathione-protected silver Nanoclusters as cysteine-selective Fluorometric and colorimetric probe. Anal Chem 85:1913–1919. https://doi.org/10.1021/ac3033678

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka S, Miyazaki J, Tiwari DK, Jin T, Inouye Y (2011) Fluorescent platinum nanoclusters: synthesis, purification, characterization, and application to bioimaging. Angew Chem Int Ed Eng 50:431–435. https://doi.org/10.1002/anie.201004907

    Article  CAS  Google Scholar 

  22. Sivasankaran U, Radecki J, Radecka H, Kumar KG (2019) Copper nanoclusters: an efficient fluorescence platform for quinolone yellow. Luminescence 34:1–6. https://doi.org/10.1002/bio.3601

    Article  CAS  Google Scholar 

  23. Hu X, Wang W, Huang Y (2016) Copper nanocluster-based fluorescent probe for sensitive and selective detection of hg (2+) in water and food stuff. Talanta 154:409–415. https://doi.org/10.1016/j.talanta.2016.03.095

    Article  PubMed  CAS  Google Scholar 

  24. Anand SK, Sivasankaran U, Jose AR, Kumar KG (2019) Interaction of tetracycline with L-cysteine functionalized CdS quantum dots - fundamentals and sensing application. Spectrochim Acta A 213:410–415. https://doi.org/10.1016/j.saa.2019.01.068

    Article  CAS  Google Scholar 

  25. Lakowicz JR (2006) Principles of fluorescence spectroscopy 3rd ed. Springer, USA

    Book  Google Scholar 

  26. Maity M, Das S, Maiti NC (2014) Stability and binding interaction of bilirubin on a gold nano- surface: steady state fluorescence and FT-IR investigation. Phys Chem Chem Phys 16:20013–20022. https://doi.org/10.1039/C4CP02649G

    Article  PubMed  CAS  Google Scholar 

  27. Jose AR, Sivasankaran U, Menon S, Kumar KG (2016) A silicon nanoparticle based turn off fluorescent sensor for Sudan I. Anal Methods 28:5701–5706. https://doi.org/10.1039/c6ay01125j

    Article  CAS  Google Scholar 

  28. Jose AR, Vikraman AE, Kumar KG (2017) Photoinduced electron transfer between quantum dots and pralidoxime: an efficient sensing strategy. New J Chem 41:10828–10834. https://doi.org/10.1039/c7nj00795g

    Article  CAS  Google Scholar 

  29. Menon S, Kumar KG (2017) A fluorescent biosensor for the development of xanthine in tea and coffee via enzymatically generated uric acid. LWT 86:8–13. https://doi.org/10.1016/j.lwt.2017.07.031

    Article  CAS  Google Scholar 

  30. Sivasankaran U, Jos TC, Kumar KG (2018) Selective recognition of creatinine- development of a colorimetric sensor. Anal Biochem 544:1–6. https://doi.org/10.1016/j.ab.2017.12.017

    Article  PubMed  CAS  Google Scholar 

  31. Shah R, Eldridge D, Palombo E, Harding I (2014) Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J Phys Sci 25:59–75

    CAS  Google Scholar 

  32. Sivasankaran U, Cyriac ST, Menon S, Kumar KG (2017) Flurescence turn off sensor for brilliant blue FCF- an approach based on inner filter effect. J Fluoresc 27:69–77. https://doi.org/10.1007/s10895-016-1935-8

    Article  PubMed  CAS  Google Scholar 

  33. Bu L, Peng J, Peng H, Liu S, Xiao H, Liu D, Pan Z, Chen Y, Chen F, He Y (2016) Fluorescent carbon dots for the sensitive detection of Cr (VI) in aqueous media and their application in test papers. RSC Adv 6:95469–95475. https://doi.org/10.1039/c6ra19977a

    Article  CAS  Google Scholar 

  34. Chen S, YU YL, Wang JH (2018) Inner filter effect based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

    Article  PubMed  CAS  Google Scholar 

  35. Sivasankara U, Thomas A, Jose AR, Kumar KG (2017) Poly (Bromophenol blue) – gold nanoparticle composite: an efficient electrochemical sensing platform for uric acid. J Electrochem Soc 164:B292–B297. https://doi.org/10.1149/2.0181707jes

    Article  CAS  Google Scholar 

  36. Sivasankaran U, Kumar KG (2019) A cost effective strategy for dual channel optical sensing of adrenalin based on ‘in situ’ formation of copper nanoparticles. Spectrochim Acta A 223:117292–117298. https://doi.org/10.1016/j.saa.2019.117292

    Article  CAS  Google Scholar 

  37. Tickner TR, Gutteridge JMC (1978) A simple colorimetric method for the estimation of plasma biliverdin. Clin Chim Acta 85:125–129. https://doi.org/10.1016/0009-8981(78)90231-0

    Article  PubMed  CAS  Google Scholar 

  38. Vink KL, Schuurman W, Gansewinkel RV (1986) Use of the caffeine reagent in direct spectrophotometry of bilirubin. Clin Chem 32:1389–1393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Kerala State Council for Science, Technology and Environment (KSCSTE), India for financial assistance in the form of project. Sanu K. Anand and Manna Rachel Mathew thank KSCSTE and University Grants Commission, respectively for their research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Girish Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S.K., Mathew, M.R. & Kumar, K.G. A Simple and Cost Effective Turn off Fluorescence Sensor for Biliverdin and Bilirubin Based on L-Cysteine Modulated Copper Nanoclusters. J Fluoresc 30, 63–70 (2020). https://doi.org/10.1007/s10895-019-02470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02470-5

Keywords

Navigation