Skip to main content
Log in

A 3D-Fluorescence Fingerprinting Approach to Detect Physiological Modifications Induced by Pesticide Poisoning in Apis mellifera: A Preliminary Study

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The combined use of 3D-fluorescence spectroscopy and independent component analysis using a differential fingerprinting approach has been applied with success to detect physiological effects of dimethoate in honeybees. Biochemical determinations combined with the identification of fluorescence zones that may correspond to proteins, NADH or neurotransmitters/neurohormones (octopamine, dopamine and serotonin) related to the physiological stress caused by the pesticide enabled phenomenological modeling of the physiological response in the honeybee using a simple and rapid method. The signals associated with the fluorophores involved in the response to stress were extracted from the fluorescence spectra using an unsupervised algorithm such as independent component analysis. The signals of different neurotransmitters were isolated on separated factorial components, thus facilitating their biochemical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Diagram 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Dimethoate was used for this study because it is now banned by the European Union. Its marked effects on bee physiology enabled the development of an indirect 3D fluorescence detection methodology.

References

  1. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188. https://doi.org/10.1016/S0169-5347(03)00011-9

    Article  Google Scholar 

  2. Maus C, Curé G, Schmuck R (2003) Safety of imidacloprid see dressings to honey bees: a comprehensive overview and compilation of the current state of knowledge. Bull Insectol 56(1):51–57

    Google Scholar 

  3. Tardieux V (1998) Les apiculteurs accusent le Gaucho d’empoisonner leurs abeilles. Le Monde

  4. Cougard MJ (1999) La disparition mystérieuse des abeilles. Le Figaro

  5. Bernard C (2000) Le GAUCHO®, reconnu tueur officiel des abeilles, 450 000 ruchers ont disparu depuis 1996. Libération

  6. Chiron J, Hattenberger A-M (2008) Mortalités, effondrements et affaiblissements des colonies d’abeilles. Entomology papers from other sources. Paper 3. http://digitalcommons.unl.edu/entomologyother/3. Accessed 11 Nov 2019

  7. Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56(4):311–323

    Article  Google Scholar 

  8. Badiou-Bénéteau A, Carvalho SM, Brunet J-L, Carvalho GA, Buleté A, Giroud B, Belzunces LP (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. Ecotoxicol Environ Saf 82:22–31. https://doi.org/10.1016/j.ecoenv.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  9. Veal EA, Toone WM, Jones N, Morgan BA (2002) Distinct roles for glutathione S-Transferases in the oxidative stress response in Schizosaccharomyces pombe*. J Biol Chem 277(38):35523–35531. https://doi.org/10.1074/jbc.M111548200

    Article  CAS  PubMed  Google Scholar 

  10. Zhu M, Zhang W, Liu F, Chen X, Li H, Xu B (2016) Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses. Gene 584. https://doi.org/10.1016/j.gene.2016.02.016

    Article  CAS  Google Scholar 

  11. Boily M, Sarrasin B, DeBlois C, Aras P, Chagnon M (2013) Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environ Sci Pollut Res 20(8):5603–5614. https://doi.org/10.1007/s11356-013-1568-2

    Article  CAS  Google Scholar 

  12. Nishikawa H, Tabata T, Kitani S (2012) Simple detection method of biogenic amines in decomposed fish by Intramolecular Excimer fluorescence. Food Nutr Sci 3(7):1020–1026. https://doi.org/10.4236/fns.2012.37135

    Article  CAS  Google Scholar 

  13. Snyder SH, Axelrod J, Zweig M (1965) A sensitive and specific fluorescence assay for tissue serotonin. Biochem Pharmacol 14(5):831–835. https://doi.org/10.1016/0006-2952(65)90102-4

    Article  CAS  PubMed  Google Scholar 

  14. Yoshimura M, Sugiyama J, Tsuta M, Fujita K, Shibata M, Kokawa M, Oshita S, Oto N (2014) Prediction of aerobic plate count on beef surface using fluorescence fingerprint. Food Bioprocess Technol 7(5):1496–1504. https://doi.org/10.1007/s11947-013-1167-8

    Article  Google Scholar 

  15. Lakowicz J (2006) Protein Fluorescence. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy. Springer, Boston, pp 529–575. https://doi.org/10.1007/978-0-387-46312-4_16

    Chapter  Google Scholar 

  16. Faucon J-P, Aurières C, Drajnudel P, Mathieu L, Ribière M, Martel A-C, Zeggane S, Chauzat M-P, Aubert MFA (2005) Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies. Pest Manag Sci 61(2):111–125. https://doi.org/10.1002/ps.957

    Article  CAS  PubMed  Google Scholar 

  17. Asghar U, Malik MF, Anwar F, Javed A, Raza A (2015) DNA extraction from insects by using different techniques: a review. Adv Entomol 3(04):132

    Article  Google Scholar 

  18. Smucker RA, Pfister RM (1975) Liquid nitrogen Cryo-impacting: a new concept for cell disruption. Appl Microbiol 30(3):445–449

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pohanka M, Hrabinova M, Kuca K, Simonato J-P (2011) Assessment of Acetylcholinesterase activity using Indoxylacetate and comparison with the standard Ellman’s method. Int J Mol Sci 12(4):2631–2640. https://doi.org/10.3390/ijms12042631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zettler JL, Brady UE (1975) Acetylcholinesterase isozymes of the house fly thorax: in vivo inhibition by organophosphorous insecticides. Pestic Biochem Physiol 5(5):471–476. https://doi.org/10.1016/0048-3575(75)90020-6

    Article  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  22. Cordella CBY, Bertrand D (2014) SAISIR: a new general chemometric toolbox. Trac-trends Anal Chem 54:75–82. https://doi.org/10.1016/j.trac.2013.10.009

    Article  CAS  Google Scholar 

  23. Bertrand D, Courcoux P, Autran J-C, Meritan R, Robert P (1990) Stepwise canonical discriminant analysis of continuous digitalized signals: application to chromatograms of wheat proteins. J Chemom 4(6):413–427. https://doi.org/10.1002/cem.1180040605

    Article  CAS  Google Scholar 

  24. Romeder J-M. Méthodes et programmes d’analyse discriminante/par Jean-Marie Romeder,…; avec la collaboration de Monique Maronda-Duhamel,… Claude Garçon,…publié sous la direction de F. [Dr François] Grémy. Dunod, Paris-Bruxelles-Montréal

  25. Comon P (1994) Independent component analysis, a new concept? Signal Process 36(3):287–314. https://doi.org/10.1016/0165-1684(94)90029-9

    Article  Google Scholar 

  26. Cordella CBY (2012) PCA: the basic building block of chemometrics. Anal Chem, Ira S. Krull, IntechOpen. https://doi.org/10.5772/51429

    Google Scholar 

  27. Jutten C, Herault J (1991) Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Process 24(1):1–10. https://doi.org/10.1016/0165-1684(91)90079-X

    Article  Google Scholar 

  28. Ammari F, Redjdal L, Rutledge DN Detection of orange juice frauds using front-face fluorescence spectroscopy and independent components analysis. Food Chem 168:211–217. https://doi.org/10.1016/j.foodchem.2014.06.110

    Article  CAS  Google Scholar 

  29. Chuang Y-K, Hu Y-P, Yang IC, Delwiche SR, Lo YM, Tsai C-Y, Chen S (2014) Integration of independent component analysis with near infrared spectroscopy for evaluation of rice freshness. J Cereal Sci 60(1):238–242. https://doi.org/10.1016/j.jcs.2014.03.005

    Article  CAS  Google Scholar 

  30. Kassouf A, El Rakwe M, Chebib H, Ducruet V, Rutledge DN, Maalouly J (2014) Independent components analysis coupled with 3D-front-face fluorescence spectroscopy to study the interaction between plastic food packaging and olive oil. Anal Chim Acta 839:14–25. https://doi.org/10.1016/j.aca.2014.06.035

    Article  CAS  PubMed  Google Scholar 

  31. Mishra P, Cordella CBY, Rutledge DN, Barreiro P, Roger JM, Diezma B (2015) Application of independent components analysis with the JADE algorithm and NIR hyperspectral imaging for revealing food adulteration. J Food Eng 168:7–15. https://doi.org/10.1016/j.jfoodeng.2015.07.008

    Article  Google Scholar 

  32. Samson-Robert O, Labrie G, Mercier P-L, Chagnon M, Derome N, Fournier V (2015) Increased Acetylcholinesterase expression in bumble bees during neonicotinoid-coated corn sowing. Sci Rep 5:12636. https://doi.org/10.1038/srep12636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Badiou A, Meled M, Belzunces LP (2008) Honeybee Apis mellifera acetylcholinesterase – a biomarker to detect deltamethrin exposure. Ecotoxicol Environ Saf 69(2):246–253. https://doi.org/10.1016/j.ecoenv.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  34. Tome HV, Martins GF, Lima MA, Campos LA, Guedes RN (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7(6):e38406. https://doi.org/10.1371/journal.pone.0038406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M (2007) Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int 27(4):339–344. https://doi.org/10.1007/s00296-006-0247-8

    Article  CAS  PubMed  Google Scholar 

  36. du Rand EE, Smit S, Beukes M, Apostolides Z, Pirk CW, Nicolson SW (2015) Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci Rep 5:11779. https://doi.org/10.1038/srep11779

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nl E, Devaud J-M, Barron AB (2012) General stress responses in the honey bee. Insects 3(4):1271–1298

    Article  Google Scholar 

  38. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Article  CAS  Google Scholar 

  39. Harris JW, Woodring J (1992) Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. J Insect Physiol 38(1):29–35. https://doi.org/10.1016/0022-1910(92)90019-A

    Article  CAS  Google Scholar 

  40. Hand SC, Hardewig I (1996) Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu Rev Physiol 58(1):539–563. https://doi.org/10.1146/annurev.ph.58.030196.002543

    Article  CAS  PubMed  Google Scholar 

  41. Kominz DR, Hough A, Symonds P, Laki K (1954) The amino acid composition of actin, myosin, tropomyosin and the meromyosins. Arch Biochem Biophys 50(1):148–159. https://doi.org/10.1016/0003-9861(54)90017-X

    Article  CAS  PubMed  Google Scholar 

  42. Stryer L, Berg JM, Tymoczko JL, Macarulla JM (2007) Biochemistry. W.H. Freeman, New York/Basingstoke

    Google Scholar 

  43. Purves D, Williams SM (2001) Neuroscience, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  44. Babers FH, Jr JJP (1951) A comparison of the cholinesterase in the heads of the house fly, the cockroach, and the honey bee. Physiol Zool 24(2):127–131. https://doi.org/10.1086/physzool.24.2.30163259

    Article  CAS  PubMed  Google Scholar 

  45. Leblanc L, Dufour à (2002) Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiol Lett 211(2):147–153. https://doi.org/10.1111/j.1574-6968.2002.tb11217.x

    Article  CAS  PubMed  Google Scholar 

  46. Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40(2):323–332. https://doi.org/10.1016/j.molcel.2010.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA (2016) Honey bee gut microbiome is altered by in-hive pesticide exposures. Front Microbiol 7(1255). https://doi.org/10.3389/fmicb.2016.01255

  48. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14(6):374–384. https://doi.org/10.1038/nrmicro.2016.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8:685

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our warmest thanks go to members of the Paris Société Centrale d’Apiculture (SCA) for their advice and the monitoring and maintenance of our experimental apiary in the context of a partnership between AgroParisTech and SCA that has been in place since 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe B. Y. Cordella.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordella, C.B.Y., Izquierdo-Rodriguez, A. & Durand-Thouand, MJ. A 3D-Fluorescence Fingerprinting Approach to Detect Physiological Modifications Induced by Pesticide Poisoning in Apis mellifera: A Preliminary Study. J Fluoresc 29, 1475–1485 (2019). https://doi.org/10.1007/s10895-019-02461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02461-6

Keywords

Navigation