Skip to main content
Log in

A Simple Red Emitting “Turn-On” Optical Relay Detector for Al3+ and CN. Application in the Real Sample and RAW264.7 Cell Imaging

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A quantitative and qualitative fluorogenic molecular probe (R) has been designed and synthesized using Rhodamine-B hydrazide and 3,5-dibromo salicylaldehyde. The probe R has been applied for detection of ionic species and probe R turned out to be a prominent distinguisher among divalent and trivalent cations Al3+, Cr3+ and Fe3+ via the fluorometric response in acetonitrile medium. Colorimetric changes were observed for trivalent cations and Cu2+. Among all trivalent cations, Al3+ is possessing relay recognition for CN even in the presence of other interfering anions with optimum precision. The association constant and the detection limit for R-Al3+ are 4.5 × 106 M−1 and 17.9 nM respectively. On the other hand, R + Al3++CN exhibits an association constant and detection limit of 5.77 × 105 M−1 and 4.6 nM respectively. The stoichiometry of Al3+ binding with R is found to be 1:1. Quantum efficiency of probe R, R + Al3+ and R + Al3++CN are found to be 0.2, 0.88 and 0.04 respectively. The receptor showed excellent real-time applicability for commercially available antiperspirant and apple seeds extract. The efficiency of the receptor further extended for fluorescent imaging of Al3+ and CN in RAW264.7 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kumar RS, Kumar SKA (2019) Highly selective fluorescent chemosensor for the relay detection of Al3+ and picric acid. Inorg Chem Commun 106:165–173

    Google Scholar 

  2. McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108(2):400–422

    CAS  PubMed  Google Scholar 

  3. Amendola V, Fabbrizzi L, Mangano C, Pallavicini P (2001) Molecular machines based on metal ion translocation. Acc Chem Res 34(6):488–493

    CAS  PubMed  Google Scholar 

  4. Czarnik AW (1994) Chemical communication in water using fluorescent chemosensors. Acc Chem Res 27(10):302–308

    CAS  Google Scholar 

  5. De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566

    PubMed  Google Scholar 

  6. Sun Z, Li H, Guo D, Liu Y, Tian Z, Yan S (2015) A novel piperazine-bis (rhodamine-B)-based chemosensor for highly sensitive and selective naked-eye detection of Cu2+ and its application as an INHIBIT logic device. J Lumin 167:156–162

    CAS  Google Scholar 

  7. Yan XF, Li DM, Hou CC, Wang X, Zhou W, Liu M, Ye TC (2012) Comparison of response towards NO2 and H2S of PPy and PPy/TiO2 as SAW sensitive films. Sensors Actuators B Chem 161(1):329–333

    CAS  Google Scholar 

  8. Ni J, Li Q, Li B, Zhang L (2013) A novel fluorescent probe based on rhodamine B derivative for highly selective and sensitive detection of mercury (II) ion in aqu eous solution. Sensors Actuators B Chem 186:278–285

    CAS  Google Scholar 

  9. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205(1):59–83

    CAS  Google Scholar 

  10. Gale PA, Quesada R (2006) Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord Chem Rev 250(23–24):3219–3244

    CAS  Google Scholar 

  11. Suksai C, Tuntulani T (2003) Chromogenic anion sensors. Chem Soc Rev 32(4):192–202

    CAS  PubMed  Google Scholar 

  12. Zhang Q, Zhang J, Zuo H, Wang C, Shen Y (2016) A novel colorimetric and fluorescent sensor for cyanide anions detection based on triphenylamine and benzothiadiazole. Tetrahedron 72(9):1244–1248

    CAS  Google Scholar 

  13. Zeng S, Li SJ, Liu TT, Sun XJ, Xing ZY (2019) A significant fluorescent “turn-on” chemosensor for Al3+ detection and application in real sample, logic gate and bioimaging. Inorganica Chim Acta 495:118962–118970

    CAS  Google Scholar 

  14. Sun Y, Wang G, Guo W (2009) Colorimetric detection of cyanide with N-nitrophenyl benzamide derivatives. Tetrahedron 65(17):3480–3485

    CAS  Google Scholar 

  15. Qu Y, Jin B, Liu Y, Wu Y, Yang L, Wu J, Hua J (2013) A new triphenylamine fluorescent dye for sensing of cyanide anion in living cell. Tetrahedron Lett 54(36):4942–4944

    CAS  Google Scholar 

  16. Li Y, Xu K, Si Y, Yang C, Peng Q, He J, Hu Q, Li K An aggregation-induced emission (AIE) fluorescent chemosensor for the detection of Al (III) in aqueous solution. Dyes Pigm 171:107682

  17. Kim H, Kim KB, Song EJ, Hwang IH, Noh JY, Kim PG, Jeong KD, Kim C (2013) Turn-on selective fluorescent probe for trivalent cations. Inorg Chem Commun 36:72–76

    CAS  Google Scholar 

  18. Zhou R, Josse F, Göpel W, Öztürk ZZ, Bekaroğlu O (1996) Phthalocyanines as sensitive materials for chemical sensors. Appl Organomet Chem 10(8):557–577

    CAS  Google Scholar 

  19. Dong Z, Tian X, Chen Y, Guo Y, Ma J (2013) Dansyl derivative functionalized Fe 3 O 4@ SiO 2 fluorescent probe for detection and removal of Hg 2+ in aqueous solution. RSC Adv 3(4):1082–1088

    CAS  Google Scholar 

  20. Sinha S, Kumar S, Koner RR, Mathew J, Nandi CK, Ghosh S (2013) Carboxylated ‘locking unit’directed ratiometric probe design, synthesis and application in selective recognition of Fe 3+/Cu 2+. RSC Adv 3(18):6271–6277

    CAS  Google Scholar 

  21. Tsukamoto K, Shinohara Y, Iwasaki S, Maeda H (2011) A coumarin-based fluorescent probe for Hg 2+ and Ag+ with an N′-acetylthioureido group as a fluorescence switch. Chem Commun 47(17):5073–5075

    CAS  Google Scholar 

  22. Gupta VK, Mergu N, Kumawat LK (2016) A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu (II) and Al (III) and fluorometric sensing of Fe (III) in aqueous media. Sensors Actuators B Chem 223:101–113

    CAS  Google Scholar 

  23. Yang XF, Guo XQ, Zhao YB (2002) Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta 57(5):883–890

    CAS  PubMed  Google Scholar 

  24. Sharif-Barfeh Z, Beigoli S, Marouzi S, Sharifi Rad A, Asoodeh A, Chamani J (2017) Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary systems. J Solut Chem 46(2):488–504

    CAS  Google Scholar 

  25. Zolfagharzadeh M, Pirouzi M, Asoodeh A, Saberi MR, Chamani J (2014) A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J Biomol Struct Dyn 32(12):1936–1952

    CAS  PubMed  Google Scholar 

  26. Sanei H, Asoodeh A, Hamedakbari-Tusi S, Chamani J (2011) Multi-spectroscopic investigations of aspirin and colchicine interactions with human hemoglobin: binary and ternary systems. J Solut Chem 40(11):1905–1931

    CAS  Google Scholar 

  27. Mokaberi P, Reyhani V, Amiri-Tehranizadeh Z, Saberi MR, Beigoli S, Samandar F, Chamani J (2019) New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: binary and ternary approaches. New J Chem 43(21):8132–8145

    CAS  Google Scholar 

  28. Kamshad M, Talab MJ, Beigoli S, Sharifirad A, Chamani J (2019) Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. J Biomol Struct Dyn 37(8):2030–2040

    CAS  PubMed  Google Scholar 

  29. Bakaeean B, Kabiri M, Iranfar H, Saberi MR, Chamani J (2012) Binding effect of common ions to human serum albumin in the presence of norfloxacin: investigation with spectroscopic and zeta potential approaches. J Solut Chem 41(10):1777–1801

    CAS  Google Scholar 

  30. Li H, Wang J, Zhang SJ, Gong CL, Wang F (2018) A novel off-on fluorescent chemosensor for Al3+ derived from a 4, 5-diazafluorene Schiff base derivative. RSC Adv 8(56):31889–31894

    CAS  Google Scholar 

  31. Paul S, Manna A, Goswami S (2015) A differentially selective molecular probe for detection of trivalent ions (Al3+, Cr3+ and Fe3+) upon single excitation in mixed aqueous medium. Dalton Trans 44(26):11805–11810

    CAS  PubMed  Google Scholar 

  32. Dolai M, Saha U, Das AK, Kumar GS (2018) Single sensors for multiple analytes employing fluorometric differentiation for Cr 3+ and Al 3+ in semi-aqueous medium with bio-activity and theoretical aspects. Anal Methods 10(33):4063–4072

    CAS  Google Scholar 

  33. Bhuvanesh N, Suresh S, Kannan K, Kannan VR, Maroli N, Kolandaivel P, Nandhakumar R (2019) Bis-anthracene derived bis-pyridine: selective fluorescence sensing of Al3+ ions. New J Chem 43(6):2519–2528

    CAS  Google Scholar 

  34. Ci Q, Liu J, Qin X, Han L, Li H, Yu H, Lim KL, Zhang CW, Li L, Huang W (2018) Polydopamine dots-based fluorescent Nanoswitch assay for reversible recognition of glutamic acid and Al3+ in human serum and living cell. ACS Appl Mater Interfaces 10(42):35760–35769

    CAS  PubMed  Google Scholar 

  35. Wu YP, Rahman FU, Bhatti MZ, Yu SB, Yang B, Wang H, Li ZT, Zhang DW (2018) Acylhydrazone as a novel “off–on–off” fluorescence probe for the sequential detection of Al 3+ and F−. New J Chem 42(18):14978–14985

    CAS  Google Scholar 

  36. Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J (2018) Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 47(23):8842–8880

    CAS  PubMed  Google Scholar 

  37. Chandra R, Manna AK, Rout K, Mondal J, Patra GK (2018) A dipodal molecular probe for naked eye detection of trivalent cations (Al3+, Fe3+ and Cr3+) in aqueous medium and its applications in real sample analysis and molecular logic gates. RSC Adv 8(63):35946–35958

    CAS  Google Scholar 

  38. Yang G, Meng X, Fang S, Wang L, Wang Z, Wang F, Duan H, Hao A (2018) Two novel pyrazole-based chemosensors: “naked-eye” colorimetric recognition of Ni2+ and Al3+ in alcohol and aqueous DMF media. New J Chem 42(17):14630–14641

    CAS  Google Scholar 

  39. Liu F, Fan C, Tu Y, Pu S (2018) A new fluorescent and colorimetric chemosensor for Al 3+ and F−/CN− based on a julolidine unit and its bioimaging in living cells. RSC Adv 8(54):31113–31120

    CAS  Google Scholar 

  40. Liu Z, Yang W, Tian B, Liu J, Zhu W, Ge G, Xiao L, Meng Y (2018) Fabrication of a self-assembled supramolecular fluorescent nanosensor from functional graphene oxide and its application for the detection of Al 3+. New J Chem 42(21):17665–17670

    CAS  Google Scholar 

  41. Saha S, Mahato P, Suresh E, Chakrabarty A, Baidya M, Ghosh SK, Das A (2011) Recognition of Hg2+ and Cr3+ in physiological conditions by a rhodamine derivative and its application as a reagent for cell-imaging studies. Inorg.Chem. 51(1):336–345

    PubMed  Google Scholar 

  42. Li CL, Lu PH, Fu SF, Wu AT (2019) A highly selective and sensitive fluorescent Chemosensor for detecting Al3+ ion in aqueous solution and plant systems. Sensors 19(3):623–632

    Google Scholar 

  43. Zhao Y, Zhang XB, Han ZX, Qiao L, Li CY, Jian LX, Shen GL, Yu RQ (2009) Highly sensitive and selective colorimetric and off− on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal Chem 81(16):7022–7030

    CAS  PubMed  Google Scholar 

  44. Yang Y, Gao C, Li B, Xu L, Duan L (2014) A rhodamine-based colorimetric and reversible fluorescent chemosensor for selectively detection of Cu2+ and Hg2+ ions. Sensors Actuators B Chem 199:121–126

    CAS  Google Scholar 

  45. Xiang Y, Tong A, Jin P, Ju Y (2006) New fluorescent rhodamine hydrazone chemosensor for Cu (II) with high selectivity and sensitivity. Org Lett 8(13):2863–2866

    CAS  PubMed  Google Scholar 

  46. Tang L, Guo J, Wang N (2013) A new Rhodamine B Hydrazide Hydrazone derivative for colorimetric and fluorescent. Bull Kor Chem Soc 34(1):159–163

    CAS  Google Scholar 

  47. Xu Z, Zhang L, Guo R, Xiang T, Wu C, Zheng Z, Yang F (2011) A highly sensitive and selective colorimetric and off–on fluorescent chemosensor for Cu2+ based on rhodamine B derivative. Sensors Actuators B Chem 156(2):546–552

    CAS  Google Scholar 

  48. Xu J, Hou Y, Ma Q, Wu X, Feng S, Zhang J, Shen Y (2014) A highly selective fluorescent probe for Cu2+ based on rhodamine B derivative. Spectrochim Acta Part A 124:416–422

    CAS  Google Scholar 

  49. Huo FJ, Su J, Sun YQ, Yin CX, Tong HB, Nie ZX (2010) A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium. Dyes Pigments 86(1):50–55

    CAS  Google Scholar 

  50. Dai K, Xu B, Chen J (2014) A Rhodamine-based “off-on” colorimetric and fluorescent chemosensor for Cu (II) in aqueous and non-aqueous media. J Fluoresc 24(4):1129–1136

    CAS  PubMed  Google Scholar 

  51. Wu GH, Wang DX, Gao Y, Wang ZQ (2009) Highly sensitive optical chemosensor for the detection of Cu2+ using a rhodamine B spirolatam. J Chem Sci 121(4):543–548

    CAS  Google Scholar 

  52. Kim HN, Nam SW, Swamy KMK, Jin Y, Chen X, Kim Y, Kim SJ, Park S, Yoon J (2011) Rhodamine hydrazone derivatives as Hg 2+ selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system. Analyst 136(7):1339–1343

    CAS  PubMed  Google Scholar 

  53. Dong M, Ma TH, Zhang AJ, Dong YM, Wang YW, Peng Y (2010) A series of highly sensitive and selective fluorescent and colorimetric “off-on” chemosensors for Cu (II) based on rhodamine derivatives. Dyes Pigments 87(2):164–172

    CAS  Google Scholar 

  54. Gao W, Yang Y, Huo F, Yin C, Xu M, Zhang Y, Chao J, Jin S, Zhang S (2014) An ICT colorimetric chemosensor and a non-ICT fluorescent chemosensor for the detection copper ion. Sensors Actuators B Chem 193:294–300

    CAS  Google Scholar 

  55. Alam R, Bhowmick R, Islam ASM, Chaudhuri K, Ali M (2017) A rhodamine based fluorescent trivalent sensor (Fe3+, Al3+, Cr3+) with potential applications for live cell imaging and combinational logic circuits and memory devices. New J Chem 41(16):8359–8369

    CAS  Google Scholar 

  56. Suganya S, Naha S, Velmathi S (2018) A critical review on colorimetric and fluorescent probes for the sensing of Analytes via relay recognition from the year 2012–17. ChemistrySelect 3(25):7231–7268

    CAS  Google Scholar 

  57. Jiang D, Xue X, Zhang G, Wang Y, Zhang H, Feng C, Wang Z, Zhao H (2019) Simple and efficient rhodamine-derived VO2+ and Cu2+−responsive colorimetric and reversible fluorescent chemosensors toward the design of multifunctional materials. J Mater Chem C 7(12):3576–3589

    CAS  Google Scholar 

Download references

Acknowledgments

The author SN acknowledges the DST-INSPIRE (Department of Science and Technology-India) Fellowship scheme for financial support (IF150881) and authors acknowledge the director of National Institute of Technology-Trichy for providing research infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivan Velmathi.

Ethics declarations

Conflict of Intrest

The authors do not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naha, S., Arshad, M.K. & Velmathi, S. A Simple Red Emitting “Turn-On” Optical Relay Detector for Al3+ and CN. Application in the Real Sample and RAW264.7 Cell Imaging. J Fluoresc 29, 1401–1410 (2019). https://doi.org/10.1007/s10895-019-02460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02460-7

Keywords

Navigation