Skip to main content
Log in

Highly Selective and Sensitive Colorimetric and Fluorimetric Sensor for Cu2+

  • FLUORESCENCE NEWS ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A newly designed fluorescent and colorimetric probe was synthesized and selective detection of cu2+ was successful in aqueous medium. The design strategy exhibited strongly fluorescent when binding with cu2+ based on the change in structure between spirocyclic to a non-cyclic form of rhodamine based dye. The UV visible spectra of probe (6GS2) exhibited three absorption peaks at 229, 309 and 530 nm respectively. The emission spectra of fluorescent probe exhibited wavelength at 550 nm. The peak intensity increases during the addition of copper ion to probe through n-π transition. The probe characterized by different techniques like NMR, absorption, emission, mass and test strips methods.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Yu F, Zhang W, Li P, Xing Y, Tong L, Ma J, Tang B (2009) Cu2+-selective naked-eye and fluorescent probe: its crystal structure and application in bioimaging. Analyst 134:1826–1833

    CAS  PubMed  Google Scholar 

  2. Yin J, Bing Q, Wang L, Wang G (2018) Spectrochim. Acta A 189:495–501

    CAS  Google Scholar 

  3. Wang N, Liu Y, Li Y, Liu Q, Xie M (2018) Sens. Actuators B 255:78–86

    CAS  Google Scholar 

  4. Vengaian KM, Britto CD (2016) K Sekar, G. Sivaraman, S. Singaravadivel. Sens. Actuators B 235:232–240

  5. Safty SAE, Shenashen MA, Ismael M, Khairy M, Awual MR (2012) Optical mesosensors for monitoring and removal of ultra-trace concentration of Zn(II) and Cu(II) ions from water. Analyst 137:5278–5290

    PubMed  Google Scholar 

  6. Li C, Xiang K, Liu Y, Zheng Y, Pan L, Tian B, Zhang J (2015) Res Chem Intermediates.ens 41:5915–5927

    CAS  Google Scholar 

  7. Lin Z, Luo F, Dong T, Zheng L, Wang Y, Chi Y, Chen G (2012) Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution. Analyst 137:2394–2399

    CAS  PubMed  Google Scholar 

  8. Lee HY, Son H, Lim JM, Oh J, Kang D, Han WS, Jung JH (2010) BODIPY-functionalized gold nanoparticles as a selective fluoro-chromogenic chemosensor for imaging Cu2+ in living cells. Analyst 135:2022–2027

    CAS  PubMed  Google Scholar 

  9. Su J, Sun YQ, Huo FJ, Yang YT, Yin CX (2010) Naked-eye determination of oxalate anion in aqueous solution with copper ion and pyrocatechol violet. Analyst 135:2918–2923

    CAS  PubMed  Google Scholar 

  10. Liu JM, Wang HF, Yan XP (2011) A gold nanorod based colorimetric probe for the rapid and selective detection of Cu2+ ions. Analyst 136:3904–3910

    CAS  PubMed  Google Scholar 

  11. Park J, Rao BA, Son YA (2015) Fiber Polym 16:953–960

    CAS  Google Scholar 

  12. Saleh SM, Ali R, Ali IA (2017) Spectrochim. Acta A 183:225–231

    CAS  Google Scholar 

  13. Wang Y, Mao PD, Wu WN, Mao XJ, Zhao XL, Xu ZQ, Xu ZH (2017) Sens. Actuators B 251:813–820

    CAS  Google Scholar 

  14. Ekmekci Z (2015) Tetrahedron Lett 56:1878–1881

    CAS  Google Scholar 

  15. More AB, Mula S, Thakare S, Chakraborty S, Ray AK, Sekar N, Chattopadhyay S (2017) J Lumin 190:476–484

    CAS  Google Scholar 

  16. Wang Y, Chang HQ, Wu WN, Peng WB, Yan YF, He CM, Xu ZQ (2016) Sens. Actuators B 228:395–400

    CAS  Google Scholar 

  17. DingLi B, Pu S, Liu G, Jia D, Zhou Y (2017) Sens. Actuators B 247:26–35

    Google Scholar 

  18. Xu Z, Xiao Y, Qian X, Cui J, Cui D (2005) Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org Lett 7:889–892

    CAS  PubMed  Google Scholar 

  19. Anand T, Sivaraman G, Anandh P, Chellappa D, Govindarajan S (2014) Tetrahedron Lett 55:671–675

    CAS  Google Scholar 

  20. Mergu N, Kim M, Son YA (2018) Spectrochim. Acta A 188:571–580

    CAS  Google Scholar 

  21. Gao Y, Zhang C, Peng S, Chen H (2017) Sens. Actuators B 238:455–461

    CAS  Google Scholar 

  22. Cheng Y, Feng Q, Yin M, Wang C, Zhou Y (2016) Tetrahedron Lett 57:3814–3818

    CAS  Google Scholar 

  23. Guo X, Qian X, Jia L (2004) A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J Am Chem Soc 126:2272–2273

    CAS  PubMed  Google Scholar 

  24. Zhang G, Zhang H, Zhang J, Ding W, Xu J, Wen Y (2017) Sens. Actuators B 253:224–230

    CAS  Google Scholar 

  25. Sun T, Niu Q, Li T, Guo Z, Liu H (2018) Spectrochim. Acta A 188:411–417

    CAS  Google Scholar 

  26. Liu L, Dong X, Xiao Y, Lian W, Liu Z (2011) Two-photon excited fluorescent chemosensor for homogeneous determination of copper(II) in aqueous media and complicated biological matrix. Analyst 136:2139–2145

    CAS  PubMed  Google Scholar 

  27. Sivaraman G, Anand T, Chellappa D (2012) Analyst 137:5881–5884

    CAS  PubMed  Google Scholar 

  28. Xu Z, Deng P, Li J, Tang S (2018) Sens. Actuators B 255:2095–2104

    CAS  Google Scholar 

  29. Gholivand MB, Niroomandi P, Yari A, Joshagani M (2005) Anal. Chim. Acta 538:225–231

    CAS  Google Scholar 

  30. Zhou Y, Wang F, Kim Y, Kim SJ, Yoon J (2009) Org Lett 11:4442–4445

    CAS  PubMed  Google Scholar 

  31. Sánchez J, BenjamínOrtíz A, Ortiz Navarrete V, Farfán N, Santillan R (2015) Analyst 17:6031–6039

    Google Scholar 

  32. Kursunlu N, Koc ZE, Obalı AY, Güler E (2014) J Lumin 149:215–220

    CAS  Google Scholar 

  33. Huang L, Wang X, Xie G, Xi P, Li Z, Xu M, Zeng Z (2010) A new rhodamine-based chemosensor for Cu2+ and the study of its behaviour in living cells. Dalton Trans 39:7894–7896

    CAS  PubMed  Google Scholar 

  34. Sivaraman G, Chellappa D, Mater J (2013) Chem B 1:5768–5772

    CAS  Google Scholar 

  35. Sivaraman G, Sathiyaraja V, Chellappa D (2014) J Lumin 145:480–485

    CAS  Google Scholar 

  36. Aigner D, Borisov SM, Fernández FJO, Sánchez JFF, Saf R, Klimant I (2012) New fluorescent pH sensors based on covalently linkable PET rhodamines. Talanta 99:194–201

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Qin JC, Yang ZY, Wang GQ, Li CR (2015) Tetrahedron Lett 56:5024–5029

    CAS  Google Scholar 

  38. Wang Y, Chang HQ, Wu WN, Mao XJ, Zhao XL, Yang Y, Jia YL (2017) J. Photochem. Photobiol. 335:10–16

    CAS  Google Scholar 

  39. Yu M, Shi M, Chen Z, Li F, Li X, Gao Y, Huang C (2008) Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging. Chem Eur J 14:6892–6900

    CAS  PubMed  Google Scholar 

  40. Tang Y, Jiang GF (2017) Tetrahedron Lett 58:2846–2849

    CAS  Google Scholar 

  41. Yadav N, Singh AK (2016) RSC Adv 6:100136–100144

    CAS  Google Scholar 

  42. Hou S, Qu Z, Zhong K, Bian Y, Tang L (2016) Tetrahedron Lett 57:2616–2619

    CAS  Google Scholar 

  43. Becke AD (1988) Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  44. Lee CT, Yang WT (1988) Parr, Phys. Rev B 37:785–789

    CAS  Google Scholar 

  45. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,K. N.; Staroverov, V. N.;Kobayashi, R.; Normand, J.; Raghavachari, K.;Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford, CT, 2009

Download references

Acknowledgements

Authors thank UGC and DST, New Delhi for financial support. DST- IRHPA, FIST, BRNS and PURSE for instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vediappen Padmini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

1. The sensor 6GS2 was synthesized by a simple method with high yield.

2. The sensor colorimetrically detects copper very easily in aqueous medium.

3. The probe was easily recognized copper compared to other metals.

4. The detection limit is 7.4x10-8M for copper in aqueous medium.

Electronic supplementary material

ESM 1

(DOCX 2050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, A., Srinivasadesikan, V., Lee, SL. et al. Highly Selective and Sensitive Colorimetric and Fluorimetric Sensor for Cu2+. J Fluoresc 30, 3–10 (2020). https://doi.org/10.1007/s10895-019-02450-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02450-9

Keywords

Navigation