Skip to main content
Log in

A Novel Biscarbazole-Xanthene Hybrid Fluorescent Probe for Selective and Sensitive Detection of Cu2+ and Applications in Bioimaging

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new biscarbazole-fused xanthene hybrid dye MeBCX has been prepared by CH3SO3H-promoted condensation of 4-hydroxycarbazole and o-phthalic anhydride, followed by esterification with methanol, which exhibits good cell membrane permeability. Taking advantage of the spiro-controlled xanthene platform of the dye, a Cu2+-selective fluorescence “off-on” probe BCX-Cu has been successfully prepared with excellent performances in selectivity and sensitivity, and the detection limit is calculated to be 88.7 nM. The sensing mechanism is confirmed to involve a specific cascade reactions of Cu2+-induced spirolactam ring-opening and hydrolysis. In addition, living L929 cell imaging demonstrates the probe has living cell membrane permeability and shows great potential for tracing intracellular Cu2+ through fluorescence imaging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4:168–175

    Article  CAS  PubMed  Google Scholar 

  2. Ueno T, Nagano T (2011) Fluorescent probes for sensing and imaging. Nat Methods 8:642–645

    Article  CAS  PubMed  Google Scholar 

  3. Ni H, Wang Q, Jin L, Wang W, Dai L, Zhao C (2019) High selectivity and reversibility/reusability red emitting fluorescent probe for copper ions detection and imaging in living cells. J Lumin 206:125–131

    Article  CAS  Google Scholar 

  4. Ashton TD, Jolliffe KA, Pfeffer FM (2015) Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem Soc Rev 44:4547–4595

    Article  CAS  PubMed  Google Scholar 

  5. Huang K, He S, Zeng X (2017) A fluoran-based fluorescent probe via a strategy of blocking the intramolecular photoinduced electron transfer (PET) process. Tetrahedron Lett 58:2004–2008

    Article  CAS  Google Scholar 

  6. Pang B, Li Q, Li C, Yang Z (2019) A highly selective and sensitive coumarin derived fluorescent probe for detecting Hg2+ in 100% aqueous solutions. J Lumin 205:446–450

    Article  CAS  Google Scholar 

  7. Wałęsa-Chorab M, Skene WG (2017) Visible-to-NIR electrochromic device prepared from a thermally polymerizable electroactive organic monomer. ACS Appl Mater Interfaces 9:21524–21531

    Article  CAS  PubMed  Google Scholar 

  8. Gotor R, Ashokkumar P, Hecht M, Keil K, Rurack K (2017) Optical pH sensor covering the range from pH 0-14 compatible with mobile-device readout and based on a set of rationally designed indicator dyes. Anal Chem 89:8437–8444

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Lv T, Zhang Y, Xu L, Zhang L, Wang X, Chen H, Guo Y (2018) A hematoporphyrin and indocyanine green co-delivery system with NIR triggered-controllable photoactivities for photodynamic therapy. Dyes Pigments 154:8–20

    Article  CAS  Google Scholar 

  10. Li M, Long S, Kang Y, Guo L, Wang J, Fan J, Du J, Peng X (2018) De novo Design of phototheranostic sensitizers based on structure-inherent targeting for enhanced cancer ablation. J Am Chem Soc 140:15820–15826

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2011) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Wang M, She M, Yang Z, Liu P, Li J, Shi Z (2014) Recent progress in the fluorescent probe based on spiro ring opening of xanthenes and related derivatives. Chin J Org Chem 34:1–25

    Article  CAS  Google Scholar 

  13. Zheng H, Zhan XQ, Bian QN, Zhang XJ (2013) Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 49:429–447

    Article  CAS  Google Scholar 

  14. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472

    Article  CAS  PubMed  Google Scholar 

  15. Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433

    Article  CAS  PubMed  Google Scholar 

  16. Sun YQ, Liu J, Lv X, Liu Y, Zhao Y, Guo W (2012) Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes. Angew Chem Int Ed 51:7634–7636

    Article  CAS  Google Scholar 

  17. Wang Q, Jiao X, Liu C, Huang K, He S, Zhao L, Zeng X (2018) Novel π-extended hybrid xanthene dyes with two spirolactone rings for optoelectronic and biological applications. Org Biomol Chem 16:7609–7618

    Article  CAS  PubMed  Google Scholar 

  18. He S, Liu Q, Li Y, Wei F, Cai S, Lu Y, Zeng X (2014) Rhodamine 6G-based chemosensor for the visual detection of Cu2+ and fluorescent detection of Hg2+ in water. Chem Res Chin Univ 30(1):32–36

  19. Lee D, Swamy KMK, Hong J, Lee S, Yoon J (2018) A rhodamine-based fluorescent probe for the detection of lysosomal pH changes in living cells. Sensors Actuators B Chem 266:416–421

    Article  CAS  Google Scholar 

  20. Zhou L, Zhang X, Wang Q, Lv Y, Mao G, Luo A, Wu Y, Wu Y, Zhang J, Tan W (2014) Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues. J Am Chem Soc 136:9838–9841

    Article  CAS  PubMed  Google Scholar 

  21. Feng XJ, Tian PZ, Xu Z, Chen SF, Wong MS (2013) Fluorescence-enhanced chemosensor for metal cation detection based on pyridine and carbazole. J Organomet Chem 78:11318–11325

    Article  CAS  Google Scholar 

  22. Zhang J, Zhang L, Wei Y, Chao J, Wang S, Shuang S, Cai Z, Dong C (2013) A selective carbazole-based fluorescent probe for chromium (III). Anal Methods 5:5549–5554

    Article  CAS  Google Scholar 

  23. Yang X, Zheng S, Bottger R, Chae HS, Tanaka T, Li S, Mochizuki A, Jabbour CE (2011) Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound. J Phys Chem C 115:14347–14352

    Article  CAS  Google Scholar 

  24. Palayangoda SS, Cai X, Adhikari RM, Neckers DC (2008) Carbazole-based donor - acceptor compounds: highly fluorescent organic nanoparticles. Org Lett 10:281–284

    Article  CAS  PubMed  Google Scholar 

  25. Jiao X, Xiao Z, Hui P, Liu C, Wang Q, Qiu X, He S, Zeng X, Zhao L (2019) A highly selective and pH-tolerance fluorescent probe for Cu2+ based on a novel carbazole-rhodamine hybrid dye. Dyes Pigments 160:633–640

    Article  CAS  Google Scholar 

  26. Verwilst P, Sunwoo K, Kim JS (2015) The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun 51:5556–5571

    Article  CAS  Google Scholar 

  27. Vonk WI, Wijmenga C, van de Sluis B (2008) Relevance of animal models for understanding mammalian copper homeostasis. Am J Clin Nutr 88:840s–845s

    Article  CAS  PubMed  Google Scholar 

  28. Muthaup G, Schlicksupp A, Hess L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer's disease in the reduction of copper (II) to copper (I). Science 271:1406–1409

    Article  Google Scholar 

  29. Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55:175–185

    Article  CAS  PubMed  Google Scholar 

  30. Kaler SG (2011) ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol 7:15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2004

    Article  CAS  PubMed  Google Scholar 

  32. Dujols V, Francis F, Czarnik AW (1997) A long-wavelength fluorescent chemodosimeter selective for Cu (II) ion in water. J Am Chem Soc 119:7386–7387

    Article  CAS  Google Scholar 

  33. Sfrazzetto GT, Satriano C, Tomaselli GA, Rizzarelli E (2016) Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 311:125–167

    Article  CAS  Google Scholar 

  34. Cotruvo Jr JA, Aron AT, Ramos-Torres KM, Chang CJ (2015) Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 44:4400–4414

    Article  Google Scholar 

  35. Huang K, Jiao X, Liu C, Wang Q, Qiu X, He S, Zhao L, Zeng X (2017) Synthesis of a novel π-extended hybrid rhodamine dye with far-red fluorescence emission and its application in bioimaging. Dyes Pigments 145:561–569

    Article  CAS  Google Scholar 

  36. Huang K, Yue Y, Jiao X, Liu C, Wang Q, He S, Zhao L, Zeng X (2017) Fluorescence regulation of 4-aminobenzofluoran and its applications for Cu2+-selective fluorescent probe and bioimaging. Dyes Pigments 143:379–386

    Article  CAS  Google Scholar 

  37. Kempahanumakkagaari SK, Thippeswamy R, Malingappa P (2014) A new rhodamine B based fluorometric chemodosimeter for Cu2+ ion in aqueous and cellular media. J Lumin 146:11–17

    Article  CAS  Google Scholar 

  38. Zheng X, Ji R, Cao X, Ge Y (2017) FRET-based ratiometric fluorescent probe for Cu2+ with a new indolizine fluorophore. Anal Chim Acta 978:48–54

    Article  CAS  PubMed  Google Scholar 

  39. Kumar M, Kumar N, Bhalla V, Sharma PR, Kaur T (2012) Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org Lett 14:406–409

    Article  CAS  PubMed  Google Scholar 

  40. Chang LL, Gao Q, Liu S, Hu CC, Zhou WJ, Zheng MM (2018) Selective and differential detection of Hg2+ and Cu2+ with use of a single rhodamine hydrazone-type probe in the absence and presence of UV irradiation. Dyes Pigments 153:117–124

    Article  CAS  Google Scholar 

  41. Yang Z, Zhao Y, Chen S, Bu Y, Zhu X, Du Y, Li F (2016) A highly sensitive and selective colorimetric “off-on” chemosensor for Cu2+ in aqueous media based on a rhodamine derivative bearing thiophene group. Sensors Actuators B Chem 235:414–419

    Article  CAS  Google Scholar 

  42. Wu WN, Wu H, Zhong RB, Wang Y, Xu ZH, Zhao XL, Xu ZQ, Fan YC (2019) Ratiometric fluorescent probe based on pyrrole-modified rhodamine 6G hydrazone for the imaging of Cu2+ in lysosomes. Spectrochim Acta A Mol Biomol Spectrosc 212:121–127

    Article  CAS  PubMed  Google Scholar 

  43. Yuan Y, Sun S, Liu S, Song X, Peng X (2015) Highly sensitive and selective turn-on fluorescent probes for Cu2+ based on rhodamine B. J Mater Chem B 3:5261–5265

    Article  CAS  Google Scholar 

  44. Shi Z, Tang X, Zhou X, Cheng J, Han Q, Zhou J, Wang B, Yang Y, Liu W, Bai D (2013) A highly selective fluorescence “turn-on” probe for Cu(II) based on reaction and its imaging in living cells. Inorg Chem 52:12668–12673

    Article  CAS  PubMed  Google Scholar 

  45. Yu C, Wang T, Xu K, Zhao J, Li M, Weng S, Zhang J (2013) Characterization of a highly Cu2+-selective fluorescent probe derived from rhodamine B. Dyes Pigments 96:38–44

    Article  CAS  Google Scholar 

  46. Tian MZ, Hu MM, Fan JL, Peng XJ, Wang JY, Sun SG, Zhang R (2013) Rhodamine-based ‘turn-on’fluorescent probe for Cu (II) and its fluorescence imaging in living cells. Bioorg Med Chem Lett 23:2916–2919

    Article  CAS  PubMed  Google Scholar 

  47. She M, Yang Z, Hao L, Wang Z, Luo T, Obst M, Liu P, Shen Y, Zhang S, Li J (2016) A novel approach to study the structure-property relationships and applications in living systems of modular Cu2+ fluorescent probes. Sci Rep 6:28972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang J, Ma S, Zhang D, Liu Y, Zhao Y, Ye Y (2016) Highly sensitive and fast responsive ratiometric fluorescent probe for Cu2+ based on a naphthalimide-rhodamine dyad and its application in living cell imaging. Sensors Actuators B Chem 236:109–115

    Article  CAS  Google Scholar 

  49. Pu S, Ma L, Liu G, Ding H, Chen B (2015) A multiple switching diarylethene with a phenyl-linked rhodamine B unit and its application as chemosensor for Cu2+. Dyes Pigments 113:70–77

    Article  CAS  Google Scholar 

  50. Huang L, Chen F, Xi P, Xie G, Li Z, Shi Y, Xu M, Liu H, Ma Z, Bai D, Zeng Z (2011) A turn-on fluorescent chemosensor for Cu2+ in aqueous media and its application to bioimaging. Dyes Pigments 90:265–268

    Article  CAS  Google Scholar 

  51. Hu ZQ, Wang XM, Feng YC, Ding L, Lu HY (2011) Sulfonyl rhodamine hydrazide: a sensitive and selective chromogenic and fluorescent chemodosimeter for copper ion in aqueous media. Dyes Pigments 88:257–261

    Article  CAS  Google Scholar 

  52. Zhang B, Diao Q, Ma P, Liu X, Song D, Wang X (2016) A sensitive fluorescent probe for Cu2+ based on rhodamine B derivatives and its application to drinking water examination and living cells imaging. Sensors Actuators B Chem 225:579–585

    Article  CAS  Google Scholar 

  53. Maity D, Karthigeyan D, Kundu TK, Govindaraju T (2013) FRET-based rational strategy for ratiometric detection of Cu2+ and live cell imaging. Sensors Actuators B Chem 176:831–837

    Article  CAS  Google Scholar 

  54. Shivaprasad M, Govindaraju T (2011) Rhodamine based bright red colourimetric and turn-on fluorescence chemosensor for selective detection of Cu2+. Mater Technol 26:168–172

    Article  CAS  Google Scholar 

  55. Maity D, Govindaraju T (2011) Highly selective visible and near-IR sensing of Cu2+ based on Thiourea-Salicylaldehyde coordination in aqueous media. Chem Eur J 17:1410–1414

    Article  CAS  PubMed  Google Scholar 

  56. Liu C, Jiao X, He S, Zhao L, Zeng X (2017) A highly selective and sensitive fluorescent probe for Cu2+ based on a novel naphthalimide–rhodamine platform and its application in live cell imaging. Org Biomol Chem 15:3947–3954

    Article  CAS  PubMed  Google Scholar 

  57. Karstens T, Kobs KJ (1980) Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. J Phys Chem 84:1871–1872

    Article  CAS  Google Scholar 

  58. Gong YJ, Zhang XB, Mao GJ, Su L, Meng HM, Tan W, Feng S, Zhang G (2016) A unique approach toward near-infrared fluorescent probes for bioimaging with remarkably enhanced contrast. Chem Sci 7:2275–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sibrian-Vazquez M, Escobedo JO, Lowry M, Fronczek FR, Strongin RM (2012) Field effects induce bathochromic shifts in xanthene dyes. J Am Chem Soc 134:10502–10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang K, Jiao X, Liu C, Wang Q, Qiu X, Zheng D, He S, Zhao L, Zeng X (2017) Highly selective and sensitive fluorescent probe for mercury ions based on a novel rhodol-coumarin hybrid dye. Dyes Pigments 142:437–446

    Article  CAS  Google Scholar 

  61. Pappayee N, Mishra AK (2000) Carbazole as an excited state proton transfer fluorescent probe for lipid bilayers in alkaline medium. Spectrochim Acta A Mol Biomol Spectrosc 56:1027–1034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of Doctoral Scientific Research Start-up Foundation of China West Normal University (18Q022), the National Natural Science Foundation of China (21671159), Meritocracy Research Funds of China West Normal University (17YC030) and Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province (CSPC201802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Huang or Dabin Qin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Han, D., Li, X. et al. A Novel Biscarbazole-Xanthene Hybrid Fluorescent Probe for Selective and Sensitive Detection of Cu2+ and Applications in Bioimaging. J Fluoresc 29, 727–735 (2019). https://doi.org/10.1007/s10895-019-02393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02393-1

Keywords

Navigation