Inclusion Complex of O-phthalaldehyde-Buprofezin with Dimethyl-β-Cyclodextrin Using Thermochemically-Induced Fluorescence Derivatization (TIFD) Method and its Analytical Application in Waters

Abstract

Improvement of the TIFD method to determine buprofezin (BUP) founded on the O-phthalaldehyde (OPA)-thermoproduct complex of buprofezin (OPA-BUP) with dimethyl-β-cyclodextrin (DMβCD) was investigated at 25 °C. The TIFD method developed in DMβCD medium, was optimized with respect to the reaction time, DMβCD concentration and pH. Based on the inclusion reaction, the OPA-BUP: DMβCD inclusion complex was developed in two aqueous media pH 7 and pH 13. A 1:1 stoichiometric ratio of OPA-BUP: DMβCD complex was obtained. The binding constants (K) and Gibbs energy (ΔG°) values increasing and decreasing with pH, respectively, show the spontaneous and thermodynamically favorable at 25 °C of the inclusion complexes formation. Normalized TIFD spectra were measured at 425 nm for emission and at 345 nm for excitation. Limits of detection (LOD) and quantification (LOQ) obtained, according to the pH, were in the ranges 0.05–0.1 ng mL ̶ 1 and 0.2–0.4 ng mL ̶ 1, respectively. Relative standard deviation (RSD) values, less than 1.3% corroborated TIFD method repeatability in DMβCD medium. Solid phase extraction (SPE) procedure which was used for quantitative analysis of natural water samples collected from Niayes area, led to satisfactory recovery rates values 99.5–117.3%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Errami M, Salghi R, Zougagh M, Zarrouk A, Bazzi E, Chakir A, Zarrok H, Hammouti B, Bazzi L (2013) Electrochemical degradation of buprofezin insecticide in aqueous solutions by anodic oxidation at boron-doped diamond electrode. Res Chem Intermed 39:505–516. https://doi.org/10.1007/s11164-012-0574-1

    Article  CAS  Google Scholar 

  2. 2.

    Liu Y, Hou Q, Liu W, Meng Y, Wang G (2015) Dynamic changes of bacterial community under bioremediation with Sphingobium sp. LY-6 in buprofezin-contaminated soil. Bioprocess Biosyst Eng 38:1485–1493. https://doi.org/10.1007/s00449-015-1391-x

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Prabhaker N, Morse JG, Castle SJ, Naranjo SE, Henneberry TJ, Toscano NC (2007) Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests. J Econ Entomol 100:1053–1061. https://doi.org/10.1603/0022-0493(2007)100[1053:TOSFIT]2.0.CO;2

  4. 4.

    Liu Y, Qi S, Zhang W, Li X, Qiu L, Wang C (2012) Acute and chronic toxicity of Buprofezin on daphnia magna and the recovery evaluation. Bull Environ Contam Toxicol 89:966–969. https://doi.org/10.1007/s00128-012-0802-9

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Cabral S, Garcia PV, Soares AO (2008) Effects of pirimicarb, buprofezin and pymetrozine on survival, development and reproduction of Coccinella undecimpunctata (Coleoptera: Coccinellidae). Biocontrol Sci Tech 18:307–318. https://doi.org/10.1080/09583150801902072

    Article  Google Scholar 

  6. 6.

    Das C, Roy S, Pal R, Kole RK, Chowdhury A (2004) Effect of pH on the persistence behavior of the insecticide Buprofezin in water under laboratory conditions. Bull Environ Contam Toxicol 72:307–311. https://doi.org/10.1007/s00128-003-9080-x

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Ibrahim MS, Al-Magboul KM, Kamal MM (2001) Voltammetric determination of the insecticide buprofezin in soil and water. Anal Chim Acta 432:21–26. https://doi.org/10.1016/S0003-2670(00)01352-0

    Article  CAS  Google Scholar 

  8. 8.

    Ellsworth PC, Martinez-Carrillo JL (2001) IPM for Bemisia tabaci in North America: a case study. Crop Prot 20:853–869. https://doi.org/10.1016/S0261-2194(01)00116-8

    Article  Google Scholar 

  9. 9.

    Naranjo SE, Ellsworth PC, Hagler JR (2004) Conservation of natural enemies in cotton: role of insect growth regulators in management of Bemisia tabaci. Biol Control 30:52–72. https://doi.org/10.1016/j.biocontrol.2003.09.010

    Article  CAS  Google Scholar 

  10. 10.

    Oulkar DP, Banerjee K, Patil SH, Upadhyay AK, Taware PB, Deshmukh MB (2009) Degradation kinetics and safety evaluation of buprofezin residues in grape (Vitis vinifera L.) and three different soils of India. Pest Manag Sci 65:183–188. https://doi.org/10.1002/ps.1666

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Data S, Walia S (2008) Photodegradation of Buprofezin. Toxicol Environ Chem 60:1–11. https://doi.org/10.1080/02772249709358446

    Article  Google Scholar 

  12. 12.

    Nakamura S, Daishima S (2005) Simultaneous determination of 64 pesticides in river water by stir barsorptive extraction and thermal desorption-gas chromatography- mass spectrometry. Anal Bioanal Chem 382:99–107. https://doi.org/10.1007/s00216-005-3158-8

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Hu H, Zhang Y, Zhang Y, Huang X, Yuan D (2014) Preparation of a new sorbent based on boronate affinity monolith and evaluation of its extraction performance for nitrogen-containing pollutants. J Chromatogr A 1342:8–15. https://doi.org/10.1016/j.chroma.2014.03.049

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Anagnostopoulos C, Miliadis GE (2013) Development and validation of an easy multiresidue method for the determination of multiclass pesticide residues using GC-MS /MS and LC–MS/MS in olive oil and olives. Talanta 112:1–10. https://doi.org/10.1016/j.talanta.2013.03.051

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Walorczyk S, Drożdżyński D, Kierzek R (2015) Determination of pesticide residues in samples of green minor crops by gas chromatography and ultra performance liquid chromatography coupled to tandem quadrupole mass spectrometry. Talanta 132:197–204. https://doi.org/10.1016/j.talanta.2014.08.073

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Hernández-Borges J, Cabrera Cabrera J, Rodríguez-Delgado MÁ, Hernández- Suárez EM, Galán Saúco V (2009) Analysis of pesticide residues in bananas harvested in the Canary Islands (Spain). Food Chem 113:313–319. https://doi.org/10.1016/j.foodchem.2008.07.042

    Article  CAS  Google Scholar 

  17. 17.

    Yoon JY, Park JH, Han YH, Lee KS (2012) Residue patterns of buprofezin and Teflubenzuron in treated peaches. JACEN 1:10–14. https://doi.org/10.4236/jacen.2012.11002

    Article  CAS  Google Scholar 

  18. 18.

    Cserháti T, Forgács E (1995) Charge transfer chromatographic study of the binding of commercial pesticides to various albumins. J Chromatogr A 699:285–290. https://doi.org/10.1016/0021-9673(95)00144-C

    Article  PubMed  Google Scholar 

  19. 19.

    Marimuthu K, Muthu N, Xavier R, Arockiaraj J, Rahman MA, Subramaniam S (2013) Toxicity of Buprofezin on the survival of embryo and larvae of African catfish, Clarias gariepinus (Bloch). PLoS One 8(10):e75545. https://doi.org/10.1371/journal.pone.0075545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Deng L, Xu M, Cao H, Dai J (2008) Ecotoxicological effects of Buprofezin on fecundity, growth, development, and predation of the wolf spider Pirata piratoides (Schenkel). Arch Environ Contam Toxicol 55:652–658. https://doi.org/10.1007/s00244-008-9149-y

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Uchida M, Nishizawa H, Suzuki T (1982) Hydrophobicity of Buprofezin and Flutolanil in relation to their soil adsorption and mobility in Rice plants. J Pestic Sci 7:397–400. https://doi.org/10.1584/jpestics.7.397

    Article  CAS  Google Scholar 

  22. 22.

    Uekama K, Hirayama F, Irie T (1998) Cyclodextrins drug carrier systems. Chem Rev 98:2045–2076. https://doi.org/10.1021/cr970025p

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341–359. https://doi.org/10.1016/S0734-9750(02)00020-4

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40. https://doi.org/10.1016/S0010-8545(00)00246-0

    Article  CAS  Google Scholar 

  25. 25.

    Mendy A, Thiaré DD, Sambou S, Khonté A, Coly A, Gaye-Seye MD, Delattre F, Tine A (2016) New method for the determination of metolachlor and buprofezin in natural water using orthophthalaldehyde by thermochemically-induced fluorescence derivatization (TIFD). Talanta 151:202–208. https://doi.org/10.1016/j.talanta.2016.01.036

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Job P (1928) Formation and stability of inorganic complexes in solution. Ann Chim 9:113–203

    CAS  Google Scholar 

  27. 27.

    Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672. https://doi.org/10.1111/j.1749-6632.1949.tb27297.x

    Article  CAS  Google Scholar 

  28. 28.

    Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2307. https://doi.org/10.1021/ja01176a030

    Article  CAS  Google Scholar 

  29. 29.

    Yu B, Wang J, Zhan H, Jin Z (2011) Investigation of the interaction between the hydrophobic cavities of Cyclodextrins and Pullulanase. Molecules 16:3010–3017. https://doi.org/10.3390/molecules16043010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Bortolus P, Monti S (1996) Photochemistry in Cyclodextrin cavities. In: Neckers DC, Volman DH, Von Bünau G (eds) Advances in photochemistry. Wiley, New York, p 27

    Google Scholar 

  31. 31.

    Monti S, Sortino S, De Guidi G, Marconi G (1998) Supramolecular photochemistry of 2-(3-benzoylphenyl) propionic acid (Ketoprofen). A study in the β-cyclodextrin cavity. New J Chem 22:599–604. https://doi.org/10.1039/A709179F

    Article  CAS  Google Scholar 

  32. 32.

    Folch C, Olea-Azar C, Sobarzo-Sánchez E, Alvarez-Lorenzo C, Concheiro A, Otero-Espinar FJ, Jullian C (2011) Inclusion complex of 4-hydroxycoumarin with cyclodextrins and its characterization in aqueous solution. J Solut Chem 40:1835–1846. https://doi.org/10.1007/s10953-011-9760-9

    Article  CAS  Google Scholar 

  33. 33.

    Wang D, Ouyang C, Hao-Liang Yuan Q, Liu X (2013) Inclusion of quinestrol and 2, 6-di-O-methyl-cyclodextrin: preparation, characterization, and inclusion mode. Carbohydr Polym 93:753–760. https://doi.org/10.1016/j.carbpol.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Connors KA (1987) Binding constants: the measurement of molecular complex stability. Wiley, New York. https://doi.org/10.1002/bbpc.19870911223

    Book  Google Scholar 

  35. 35.

    Smith VK, Ndou TT, Muñoz De La Peña A, Warner IM (1991) Spectral characterization of β-Cyclodextrin : triton X-100 complexes. J Incl Phenom Mol Recognit Chem 10:471–484. https://doi.org/10.1007/BF01061077

    Article  CAS  Google Scholar 

  36. 36.

    Xiong J, Hu B (2008) Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection. J Chromatogr A 1193:7–18. https://doi.org/10.1016/j.chroma.2008.03.072

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J Chromatogr A 1216:885–891. https://doi.org/10.1016/j.chroma.2008.11.076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the service of Cooperation and Cultural Action of the Embassy of France in Senegal (763818C) who has funded this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alphonse Mendy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendy, A., Thiaré, D.D., Bodian, E.H.T. et al. Inclusion Complex of O-phthalaldehyde-Buprofezin with Dimethyl-β-Cyclodextrin Using Thermochemically-Induced Fluorescence Derivatization (TIFD) Method and its Analytical Application in Waters. J Fluoresc 29, 515–522 (2019). https://doi.org/10.1007/s10895-019-02386-0

Download citation