Skip to main content

Advertisement

Log in

Intense Yellow Emitting Biocompatible CaS:Eu Nanophosphors Synthesized by Wet Chemical Method

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Here we report the synthesis of intense yellow emitting CaS:Eu nanoparticles by a low temperature wet chemical coprecipitation method which can be used for various optoelectronic and biological applications. The particles were characterized systematically using techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, photoluminescence (PL) and UV-Vis absorption spectroscopy. XRD analysis revealed that all the samples exhibited a cubic structure with good crystallinity. Formation of nanoparticles having spherical morphology with the diameter in the range 4–8 nm was confirmed by TEM analysis. The PL emission color varied from yellowish white to yellow as the excitation wavelength was increased from 335 to 395 nm. The PL emission peaks are attributed to 5D0- 7FJ (J = 0,1,2,3,...) electronic transitions of Eu3+ ions incorporated into the CaS host lattice. Fourier transform infrared spectroscopy measurements were taken to elucidate the presence of various bonds in the sample. In vitro cytotoxicity analysis of the samples was also performed using MTT assay on human L929 fibroblasts cell lines in order to assess the biocompatibility of the nanoparticles. This is the first time report of the cytotoxicity studies of highly fluorescent CaS: Eu nanoparticles synthesized by wet chemical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lehman W, Ryan FM (1971) Cathodoluminescence of CaS : Ce3 + and CaS : Eu2 + phosphors. J Electrochem Soc 118:477–482

    Article  Google Scholar 

  2. Crandall RS (1987) Mechanism of electroluminescence in alkaline earth sulfides. Appl Phys Lett 50:551–553

    Article  CAS  Google Scholar 

  3. Kasano H, Megumi K, Yamamoto H (1987) Cathodoluminescence of Ca1-xMgS: A (A=Eu or Ce). J Electrochem Soc 131:1953–1960

    Article  Google Scholar 

  4. Yamamoto H, Megumi K Kasano H (1987) An orange-emitting phosphor (Ca, Mg)S.Mn for terminal display tubes. J Electrochem Soc 134:1571–1573

    Article  CAS  Google Scholar 

  5. Marwaha GL, Singh N, Vij DR, Mathur VK (1980) Spectral variations and retrapping processes in CaS: Bi dosimeter. Radiat Eff 53:25–31

    Article  CAS  Google Scholar 

  6. Marwaha GL, Singh N, Nagpal JS, Mathur VK (1981) Operational importance of some physical parameters of TL phosphor CaS: Bi. Radiat Eff 55:85–90

    Article  CAS  Google Scholar 

  7. Anuradha RI (2016) Europium doped nanophosphors and applications in in vitro optical bioimaging. J Integr Sci Technol 4(2):46–50

    Google Scholar 

  8. Sun BQ, Yi GS, Chen D, Zhou Y, Cheng J (2002) Synthesis and characterization of strongly fluorescent europium doped calcium sulfide nanoparticles. J Mater Chem 12:1194–1198

    Article  CAS  Google Scholar 

  9. Haecke JE, Smet ZPF, Keyser KD, Poelman D (2007) Single crystal CaS: Eu and SrS: Eu luminescent particles obtained by solvothermal synthesis. J.Electrochem.Soc 154:J278–J282

    Article  CAS  Google Scholar 

  10. Sawada N, Chen Y, Isobe T (2006) Low-temperature synthesis and photoluminescence of IIA-VIB nanophosphors doped with rare earth ions. J Alloys Compd 408:824–827

    Article  CAS  Google Scholar 

  11. Burbano DC, Rodríguez EM, Dorenbos P, Capobianca JA (2014) The near –IR photostimulated luminescence of in CaS: Eu2+/ Dy3+ nanophosphors. J Mater Chem C 2:228–233

    Article  Google Scholar 

  12. Burbano DC, Sharma SK, Dorenbos P, Viana B, Capobianca JA (2015) Persistent and photostimulated red emission in CaS: Eu2+, Dy3+ nanophosphors. Ad Opt Mater 3:551–557

    Article  CAS  Google Scholar 

  13. Han M, Oh SJ, Park J, Park HL (1993) X-ray photoelectron spectroscopic studies of CaS: Eu and SrS: Eu phosphors. J Appl Phys 73(9):4546–4549

    Article  CAS  Google Scholar 

  14. Rao CA, Rao NVP, Murthy KVR (2015) Synthesis, characterization and photoluminescence properties of CaS: Eu3+ and SrS: Eu3+ for white LED. APL 2(4):4–10. https://doi.org/10.1097/APL/62

  15. Wu SH, Tseng CL, Lin FH (2010) A newly developed Fe-doped calcium sulfide nanoparticles with magnetic property for cancer hyperthermia. J Nanopart Res 12:1173–1185

    Article  CAS  Google Scholar 

  16. Wu SH, Yang K, Tseng C, Chen J, Lin FH (2011) Silica modified Fe doped CaS nanoparticles for invitro and in vivo cancer hypothermia. J Nanopart Res 13:1139–1149

    Article  CAS  Google Scholar 

  17. Forti K, Figueroa M, Torres B, Bernard F, Rivera D, Castro ME, Suarez E (2016) Calcium sulfide (CaS) nanostructure treatment on non-small cell lung cancer. FASEB J 30(1):1099.4

    Google Scholar 

  18. Kumar V, Kumar R, Lochab SP, Singh N (2006) Synthesis and characterization of bismuth doped calcium sulfide nanocrystallites. J Phys Condens Matter 18:5029–5036

    Article  CAS  Google Scholar 

  19. Meerloo JV, Kaspers G, Cloos J (2011) Cell sensitivity assays: the MTT assay. In Cree IA (ed) Methods in molecular biology, cancer cell culture methods and protocols second edition. Humana Press, pp 237

  20. Talarico LB, Zibetti RGM, Faria PCS, Scolaro LA, Duarte MER, Noseda MD, Pujol CA, Damonte EB (2004) Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulate. Int J Biol Macromol 34:63–41

    Article  CAS  PubMed  Google Scholar 

  21. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wiley Pub Co, Reading, Massachusetts, p 102

    Google Scholar 

  22. Luo W, Liu Y, Chen X (2015) Lanthanide doped semiconductor nanocrystals: electronic structures and optical properties. Sci China Mater 58:819–850

    Article  CAS  Google Scholar 

  23. Huo Q, Tu W, Gio L (2017) Enhanced photoluminescence property and broad color emission of ZnGa2 O4 phosphor due to the synergistic role of Eu and carbon dots. Opt Mater 72:305–312

    Article  CAS  Google Scholar 

  24. Xu B, Li D, Huang Z, Tang C, Mo W, Ma Y (2018) Alleviating luminescence concentration quenching in lanthanide doped CaF2 based nanoparticles through Na+ ion doping. Dalton Trans 47:7534–7540

    Article  CAS  PubMed  Google Scholar 

  25. Byun HJ, Kim J, Yang H (2009) Blue green and red emission from undoped and doped Zn Ga2O4 colloidal nanocrystals. Nanotechnology 20:495602

    Article  CAS  PubMed  Google Scholar 

  26. Wani JA, Dhoble NS, Kokode NS, Dhoble JS (2014) Synthesis and photoluminescence property of Re3+activated Na2Ca P2O7 phosphor. Adv Mater Lett 5(8):459–464

    Article  CAS  Google Scholar 

  27. Blasse G (1986) Energy transfer between inequivalent Eu2+ ions. J Solid State Chem 62:207–211

    Article  CAS  Google Scholar 

  28. Uitert LGV (1969) Characterization of energy transfer interactions between rare earth ions. J Electrochem Soc 114:1048–1053

    Article  Google Scholar 

  29. Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Zh Tekh Fiz 12:593–620

    Google Scholar 

  30. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. Part 1. J Opt Soc Am 38:448–457

    Article  CAS  PubMed  Google Scholar 

  31. Rekha S, Martinez A, Safeera TA, Anila EI (2017) Enhanced luminescence of Triethanolamine capped CaS nanophosphors synthesized by wet chemical method. J Lumin 190:94–99

    Article  CAS  Google Scholar 

  32. Ahamed S, Zekry A (2010) A new and simple model for plasma and doping induced bandgap narrowing. J Electron Devices 8:293–299

    Google Scholar 

  33. Majid A, Ali A (2009) Band tailing effects in neon-implanted GaN. J Appl Phys 106:123528

    Article  CAS  Google Scholar 

  34. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST x-ray photoelectron spectroscopy database, NIST Standard Reference Database 20, Version 4.1. https://doi.org/10.18434/T4T88K

  35. Poornaprakash BP, Poojitha PT, Chalapathi U, Park SH (2016) Achieving room temperature ferromagnetism in ZnS nanoparticles via Eu3+ doping. Mater Lett 181:227–230

    Article  CAS  Google Scholar 

  36. Kumar S, Prakash R, Choudhary RJ, Phase DM (2015) Structural, XPS and magnetic studies of pulsed laser deposited Eu2O3 thin film. Mater Res Bull 70:392–396

    Article  CAS  Google Scholar 

  37. Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Mayers RA (ed) Encyclopedia of analytical chemistry. John Wiley & Sons Ltd, Chichester, p 10815

    Google Scholar 

  38. Interpreting an infrared spectra: chemguide (2014). Available at http://www.chemguide.co.uk/analysis/ir/interpret. Accessed 17.05.2018

  39. Anandhan K, Thilak K (2015) Synthesis, FTIR, UV-vis and photoluminescence characterizations of triethanolamine passivated CdO nanostructures. Spectrochim Acta A Mol Biolmol Spectrosc 49:476–480

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for financial support under the EMR scheme. Author S. Rekha thank University Grants Commission (UGC), Government of India for aid under FDP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Anila.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekha, S., Anila, E.I. Intense Yellow Emitting Biocompatible CaS:Eu Nanophosphors Synthesized by Wet Chemical Method. J Fluoresc 29, 673–682 (2019). https://doi.org/10.1007/s10895-019-02375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02375-3

Keywords

Navigation