Skip to main content

Advertisement

Log in

A Turn off-on Fluorescent Chemosensor for Sequential Determination of Mercury and Biothiols

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The selective and sensitive determination of biothiols in aqueous media has been great attention due to their important role in biological and pharmacological processes. We synthesized tryptophan functionalized perylene bisimide as a sensing chemosensor for mercury in aqueous solution. This complex between perylene dimide derivate (PDI/Trp) and mercury ions was evaluated and displayed to be turn on fluorescent chemosensor for the determination of biothiols in aqueous media. PDI/Trp showed fluorescence quenching in the presence of Hg2+ and the fluorescence was recovered after addition of biological thiols (cysteine, homocysteine and glutathione). Therefore, PDI/Trp can be employed as a fluorescence probe for the sequencial recognization of Hg2+ and biothiols in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk Optodes. 1. General characteristics. Chem Rev 97:3083–3132

    Article  CAS  Google Scholar 

  2. Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Mikrochim Acta 126:177–192. https://doi.org/10.1007/BF01242319

    Article  CAS  Google Scholar 

  3. Liu Y, Lv X, Liu J, Sun YQ, Guo W (2015) Construction of a selective fluorescent probe for GSH based on a Chloro-functionalized Coumarin-enone dye platform. Chem - A Eur J n/a-n/a 21:4747–4754. https://doi.org/10.1002/chem.201406004

    Article  CAS  Google Scholar 

  4. Firooz AR, Ensafi AA, Karimi K, Khalifeh R (2013) Specific sensing of mercury(II) ions by an optical sensor based on a recently synthesized ionophore. Sensors Actuators B Chem 185:84–90. https://doi.org/10.1016/j.snb.2013.04.108

    Article  CAS  Google Scholar 

  5. Wang XF, Cynader MS (2001) Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci 21:3322–3331

    Article  CAS  Google Scholar 

  6. Shahrokhian S (2001) Lead Phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73:5972–5978. https://doi.org/10.1021/ac010541m

    Article  CAS  PubMed  Google Scholar 

  7. As PH, Factor R, Dementiaalzheimer FOR (2002) Plasma Homocysteine As a Risk Factor for Dementia and Alzheimer ’ S Disease 346:476–483

    Google Scholar 

  8. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, Johnston C, Engbaek F, Schneede J, McPartlin C, Scott JM (2004) Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 50:3–32. https://doi.org/10.1373/clinchem.2003.021634

    Article  CAS  PubMed  Google Scholar 

  9. Dubey RK, Efimov A, Lemmetyinen H (2011) 1,7-and 1,6-regioisomers of diphenoxy and dipyrrolidinyl substituted perylene diimides: synthesis, separation, characterization, and comparison of electrochemical and optical properties. Chem Mater 23:778–788. https://doi.org/10.1021/cm1018647

    Article  CAS  Google Scholar 

  10. Miao P, Liu L, Nie Y, Li G (2009) An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens Bioelectron 24:3347–3351. https://doi.org/10.1016/j.bios.2009.04.041

    Article  CAS  PubMed  Google Scholar 

  11. Pacsial-Ong EJ, McCariey RL, Wang W, Strongin RM (2006) Electrochemical detection of glutathione using redox indicators. Anal Chem 78:7577–7581. https://doi.org/10.1021/ac061451q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang Y-F, Chang H-T (2007) Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem 79:4852–4859. https://doi.org/10.1021/ac070023x

    Article  CAS  PubMed  Google Scholar 

  13. Huang GG, Hossain MK, Han XX, Ozaki Y (2009) A novel reversed reporting agent method for surface-enhanced Raman scattering; highly sensitive detection of glutathione in aqueous solutions. Analyst 134:2468–2474. https://doi.org/10.1039/b914976g

    Article  CAS  PubMed  Google Scholar 

  14. Wu C, Xu QH (2009) Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 25:9441–9446. https://doi.org/10.1021/la900646n

    Article  CAS  PubMed  Google Scholar 

  15. Timur S, Odaci D, Dincer A, Zihnioglu F, Telefoncu A (2008) Biosensing approach for glutathione detection using glutathione reductase and sulfhydryl oxidase bienzymatic system. Talanta 74:1492–1497. https://doi.org/10.1016/j.talanta.2007.09.026

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Li Y, Yan XP (2009) Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids. Anal Chem 81:5001–5007. https://doi.org/10.1021/ac900394e

    Article  CAS  PubMed  Google Scholar 

  17. Wei M, Yin P, Shen Y, Zhang L, Deng J, Xue S, Li H, Guo B, Zhang Y, Yao S (2013) A new turn-on fluorescent probe for selective detection of glutathione and cysteine in living cells. Chem Commun (Camb) 49:4640–4642. https://doi.org/10.1039/c3cc39045d

    Article  CAS  Google Scholar 

  18. Jiang X, Yu Y, Chen J, Zhao M, Chen H, Song X, Matzuk AJ, Carroll SL, Tan X, Sizovs A, Cheng N, Wang MC, Wang J (2015) Quantitative imaging of glutathione in live cells using a reversible reaction-based Ratiometric fluorescent probe. ACS Chem Biol 10:864–874. https://doi.org/10.1021/cb500986w

    Article  CAS  PubMed  Google Scholar 

  19. Dinalp H, Akar Z, Zafer C, Li S (2011) Effect of side chain substituents on the electron injection abilities of unsymmetrical perylene diimide dyes. Dyes Pigments 91:182–191. https://doi.org/10.1016/j.dyepig.2011.03.022

    Article  CAS  Google Scholar 

  20. Refiker H, Icil H (2011) Amphiphilic and chiral unsymmetrical perylene dye for solid-state dye-sensitized solar cells. Turkish J Chem 35:847–859. https://doi.org/10.3906/kim-1107-39

    Article  CAS  Google Scholar 

  21. Langhals H (2004) Color chemistry. Synthesis, properties and applications of organic dyes and pigments. 3rd revised edition. By Heinrich Zollinger. Angew Chemie Int Ed 43:5291–5292. https://doi.org/10.1002/anie.200385122

    Article  CAS  Google Scholar 

  22. Würthner F (2004) Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem Commun (Camb):1564–1579. https://doi.org/10.1039/b401630k

  23. Huang L, Zhu F, Liu C, Wang H, Geng Y, Yan D (2010) Heteroepitaxy growth high performance films of perylene diimide derivatives. Org Electron physics, Mater Appl 11:195–201. https://doi.org/10.1016/j.orgel.2009.10.014

    Article  CAS  Google Scholar 

  24. Jin Y, Hua J, Wu W, Ma X, Meng F (2008) Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo[e]indole for dye-sensitized solar cells. Synth Met 158:64–71. https://doi.org/10.1016/j.synthmet.2007.12.005

    Article  CAS  Google Scholar 

  25. Sapagovas VJ, Gaidelis V, Kovalevskij V, Undzenas a. (2006) 3,4,9,10-Perylenetetracarboxylic acid derivatives and their photophysical properties. Dyes Pigments 71:178–187 . doi: https://doi.org/10.1016/j.dyepig.2005.06.012

    Article  CAS  Google Scholar 

  26. Sukul PK, Santra DC, Singh PK, Maji SK, Malik S (2015) Water soluble perylene bisimide and its turn off/on fluorescence are used to detect cysteine and homocysteine. New J Chem 39:5084–5087. https://doi.org/10.1039/C5NJ00608B

    Article  CAS  Google Scholar 

  27. Farooqi MJ, Penick MA, Burch J, Negrete GR, Brancaleon L (2016) Characterization of novel perylene diimides containing aromatic amino acid side chains. Spectrochim Acta Part AMolecular Biomol Spectrosc 153:124–131. https://doi.org/10.1016/j.saa.2015.08.013

    Article  CAS  Google Scholar 

  28. Oliveira E, Costa SPG, Raposo MMM, Faza ON, Lodeiro C (2011) Inorganica Chimica Acta synthesis , characterization , fluorescence and computational studies of new cu 2 + , Ni 2 + and hg 2 + complexes with emissive thienylbenzoxazolyl-alanine ligands. Inorganica Chim Acta 366:154–160. https://doi.org/10.1016/j.ica.2010.10.025

    Article  CAS  Google Scholar 

  29. Cukurovali A, Kirbag S (2006) Spectroscopic characterization and biological activity of salicylaldehyde thiazolyl hydrazone ligands and their metal complexes. Transit Met Chem 31:207–213. https://doi.org/10.1007/s11243-005-6353-8

    Article  CAS  Google Scholar 

  30. Ranjbar M, Malakooti E, Sheshmani S (2013) Synthesis and characterization of mercury (II) complexes containing 2,9-dimethyl-1,10-phenanthroline by sonochemical method. J Chem 2013:1–6. https://doi.org/10.1155/2013/560983

    Article  CAS  Google Scholar 

  31. Ruan Y-B, Li A-F, Zhao J-S, Shen JS, Jiang YB (2010) Specific Hg2+−mediated perylene bisimide aggregation for highly sensitive detection of cysteine. Chem Commun 46:4938–4940. https://doi.org/10.1039/c0cc00630k

    Article  CAS  Google Scholar 

  32. Sukul PK, Santra DC, Singh PK, Maji SK, Malik S (2015) Water soluble perylene bisimide and its turn off/on fluorescence are used to detect cysteine and homocysteine. New J Chem 39:5084–5087. https://doi.org/10.1039/C5NJ00608B

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The manuscript is part of the Ph.D. thesis of Şükriye Nihan KARUK ELMAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Yilmaz.

Electronic supplementary material

ESM 1

(DOCX 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuk Elmas, Ş.N., Yilmaz, I. A Turn off-on Fluorescent Chemosensor for Sequential Determination of Mercury and Biothiols. J Fluoresc 28, 1451–1458 (2018). https://doi.org/10.1007/s10895-018-2320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2320-6

Keywords

Navigation