Skip to main content
Log in

Sensitive and Selective Detection of Antibiotic D-Penicillamine Based on a Dual-Mode Probe of Fluorescent Carbon Dots and Gold Nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This paper reported a dual-mode probe for D-penicillamine on the basis of pH-mediated gold nanoparticles aggregation and fluorescence resonance energy transfer (FRET) from carbon dots. D-penicillamine is a zwitterionic compound and has different forms depending on specific pH ranges. The thiol group of D-penicillamine has high affinity towards the surface of gold nanoparticles and can replace other surface ligands. When pH values were close to its isoelectrical point (pH(I)), the D-penicillamine capped gold nanoparticles aggregated through hydrogen bonding or electrostatic interactions, resulting in the releasing of carbon dots from gold nanoparticles. The dual-mode probe consisted of fluorescent carbon dots and gold nanoparticles, and the fluorescence of carbon dots was quenched by the attached gold nanoparticles due to the FRET. Then, the fluorescence can be recovered in presence of D-penicillamine due to the gold nanoparticles aggregation in specific pH range. Under the optimum conditions, the probe has linear response for D-penicillamine in the 0.25–1.5 μM concentration range with a detection limit of 0.085 μM. This method provides a potential application in sensitive detection of D-penicillamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Walekar LS, Kondekar UR, Gore AH, Pawar SP, Sudarsan V, Anbhule PV, Patil SR, Kolekar GB (2014) Ultrasensitive, highly selective and naked eye colorimetric recognition of d-penicillamine in aqueous media by CTAB capped AgNPs: applications to pharmaceutical and biomedical analysis. RSC Adv 4(102):58481–58488. https://doi.org/10.1039/C4RA05741D

    Article  CAS  Google Scholar 

  2. Raoof J-B, Ojani R, Chekin F (2009) Voltammetric sensor for D-penicillamine determination based on its electrocatalytic oxidation at the surface of ferrocenes modified carbon paste electrodes. J Chem Sci 121(6):1083–1091. https://doi.org/10.1007/s12039-009-0123-7

    Article  CAS  Google Scholar 

  3. Yuan Y, Zhao X, Liu S, Li Y, Shi Y, Yan J, Hu X (2016) A fluorescence switch sensor used for D-Penicillamine sensing and logic gate based on the fluorescence recovery of carbon dots. Sensors Actuators B Chem 236(Supplement C):565–573. https://doi.org/10.1016/j.snb.2016.06.007

    Article  CAS  Google Scholar 

  4. Pawar SP, Gore AH, Walekar LS, Anbhule PV, Patil SR, Kolekar GB (2015) Turn-on fluorescence probe for selective and sensitive detection of d-penicillamine by CdS quantum dots in aqueous media: application to pharmaceutical formulation. Sensors Actuators B Chem 209(Supplement C):911–918. https://doi.org/10.1016/j.snb.2014.12.064

    Article  CAS  Google Scholar 

  5. Kuśmierek K, Bald E (2007) Simultaneous determination of tiopronin and d-penicillamine in human urine by liquid chromatography with ultraviolet detection. Anal Chim Acta 590(1):132–137. https://doi.org/10.1016/j.aca.2007.03.025

    Article  CAS  PubMed  Google Scholar 

  6. Wei J, Guo Y, Li J, Yuan M, Long T, Liu Z (2017) Optically active ultrafine Au–Ag alloy nanoparticles used for colorimetric chiral recognition and circular dichroism sensing of enantiomers. Anal Chem 89(18):9781–9787. https://doi.org/10.1021/acs.analchem.7b01723

    Article  CAS  PubMed  Google Scholar 

  7. Rao H, Ge H, Wang X, Zhang Z, Liu X, Yang Y, Liu Y, Liu W, Zou P, Wang Y (2017) Colorimetric and fluorometric detection of protamine by using a dual-mode probe consisting of carbon quantum dots and gold nanoparticles. Microchim Acta 184(8):3017–3025. https://doi.org/10.1007/s00604-017-2305-1

    Article  CAS  Google Scholar 

  8. Zhao D, Chen C, Sun J, Yang X (2016) Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Analyst 141(11):3280–3288. https://doi.org/10.1039/C6AN00514D

    Article  CAS  PubMed  Google Scholar 

  9. Li K-B, Chen F-Z, Yin Q-H, Zhang S, Shi W, Han D-M (2018) A colorimetric and near-infrared fluorescent probe for hydrogen polysulfides and its application in living cells. Sensors Actuators B Chem 254:222–226. https://doi.org/10.1016/j.snb.2017.07.079

    Article  CAS  Google Scholar 

  10. Wang H, Lu Q, Liu Y, Li H, Zhang Y, Yao S (2017) A dual-signal readout sensor for highly sensitive detection of iodide ions in urine based on catalase-like reaction of iodide ions and N-doped C-dots. Sensors Actuators B Chem 250:429–435. https://doi.org/10.1016/j.snb.2017.04.117

    Article  CAS  Google Scholar 

  11. Liu Q, Xu S, Niu C, Li M, He D, Lu Z, Ma L, Na N, Huang F, Jiang H, Ouyang J (2015) Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens Bioelectron 64:119–125. https://doi.org/10.1016/j.bios.2014.08.052

    Article  CAS  PubMed  Google Scholar 

  12. Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 4(29):6927–6945. https://doi.org/10.1039/C6TC02055K

    Article  CAS  Google Scholar 

  13. Yan Y, Zhang K, Yu H, Zhu H, Sun M, Hayat T, Alsaedi A, Wang S (2017) Sensitive detection of sulfide based on the self-assembly of fluorescent silver nanoclusters on the surface of silica nanospheres. Talanta 174:387–393. https://doi.org/10.1016/j.talanta.2017.06.027

    Article  CAS  PubMed  Google Scholar 

  14. Dai H, Shi Y, Wang Y, Sun Y, Hu J, Ni P, Li Z (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors Actuators B Chem 202:201–208. https://doi.org/10.1016/j.snb.2014.05.058

    Article  CAS  Google Scholar 

  15. Sun M, Yu H, Zhang K, Zhang Y, Yan Y, Huang D, Wang S (2014) Determination of gaseous sulfur dioxide and its derivatives via fluorescence enhancement based on cyanine dye functionalized carbon Nanodots. Anal Chem 86(19):9381–9385. https://doi.org/10.1021/ac503214v

    Article  CAS  PubMed  Google Scholar 

  16. Yu H, Du L, Guan L, Zhang K, Li Y, Zhu H, Sun M, Wang S (2017) A ratiometric fluorescent probe based on the pi-stacked graphene oxide and cyanine dye for sensitive detection of bisulfite. Sensors Actuators B Chem 247:823–829. https://doi.org/10.1016/j.snb.2017.03.101

    Article  CAS  Google Scholar 

  17. Yan Y, Yu H, Zhang K, Sun M, Zhang Y, Wang X, Wang S (2016) Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res 9(7):2088–2096. https://doi.org/10.1007/s12274-016-1099-5

    Article  CAS  Google Scholar 

  18. Yu L, Li Y, Yu H, Zhang K, Wang X, Chen X, Yue J, Huo T, Ge H, Alamry KA, Marwani HM, Wang S (2018) A fluorescence probe for highly selective and sensitive detection of gaseous ozone based on excited-state intramolecular proton transfer mechanism. Sensors Actuators B Chem 266:717–723. https://doi.org/10.1016/j.snb.2018.03.175

    Article  CAS  Google Scholar 

  19. Jena BK, Raj CR (2008) Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. Biosens Bioelectron 23(8):1285–1290. https://doi.org/10.1016/j.bios.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  20. Moon H, Kumar D, Kim H, Sim C, Chang J-H, Kim J-M, Kim H, Lim D-K (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9(3):2711–2719. https://doi.org/10.1021/nn506516p

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Zhang W, Sheng Su D, Meng X, Xiao F-S (2012) Supported Au nanoparticles as efficient catalysts for aerobic homocoupling of phenylboronic acid. Chem Commun 48(44):5476–5478. https://doi.org/10.1039/C2CC31115A

    Article  CAS  Google Scholar 

  22. Zhai Y, Zhou D, Jing P, Li D, Zeng H, Qu S (2017) Preparation and application of carbon-nanodot@NaCl composite phosphors with strong green emission. J Colloid Interface Sci 497:165–171. https://doi.org/10.1016/j.jcis.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  23. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743. https://doi.org/10.1021/ac00100a008

    Article  CAS  Google Scholar 

  24. Peng X, Long Q, Li H, Zhang Y, Yao S (2015) “Turn on-off” fluorescent sensor for protamine and heparin based on label-free silicon quantum dots coupled with gold nanoparticles. Sensors Actuators B Chem 213:131–138. https://doi.org/10.1016/j.snb.2015.02.070

    Article  CAS  Google Scholar 

  25. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold Nanoparticles from UV−Vis spectra. Anal Chem 79(11):4215–4221. https://doi.org/10.1021/ac0702084

    Article  CAS  PubMed  Google Scholar 

  26. Hormozi-Nezhad MR, Abbasi-Moayed S (2014) A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles. Talanta 129:227–232. https://doi.org/10.1016/j.talanta.2014.05.022

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J, Chang H, Li J-J, Li X, Zhao J-W (2017) Dual-mode melamine detection based on gold nanoparticles aggregation-induced fluorescence “turn-on” and “turn-off” of CdTe quantum dots. Sensors Actuators B Chem 239:906–915. https://doi.org/10.1016/j.snb.2016.08.107

    Article  CAS  Google Scholar 

  28. Liu T, Li N, Dong JX, Zhang Y, Fan YZ, Lin SM, Luo HQ, Li NB (2017) A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens Bioelectron 87:772–778. https://doi.org/10.1016/j.bios.2016.08.098

    Article  CAS  PubMed  Google Scholar 

  29. Pawar SP, Gore AH, Walekar LS, Anbhule PV, Patil SR, Kolekar GB (2015) Turn-on fluorescence probe for selective and sensitive detection of d-penicillamine by CdS quantum dots in aqueous media: application to pharmaceutical formulation. Sensors Actuators B Chem 209:911–918. https://doi.org/10.1016/j.snb.2014.12.064

    Article  CAS  Google Scholar 

  30. Li BL, Luo JH, Luo HQ, Li NB (2013) A novel strategy for selective determination of d-penicillamine based on molecularly imprinted polypyrrole electrode via the electrochemical oxidation with ferrocyanide. Sensors Actuators B Chem 186:96–102. https://doi.org/10.1016/j.snb.2013.05.091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported from the National Key Research and Development Program of China (2017YFA02070003), the National Natural Science Foundation of China (21475134, 21507135, 21675158, and 21775042) and the Fundamental Research Funds for the Central Universities (2016ZZD06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhua Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Zhang, K., Yu, H. et al. Sensitive and Selective Detection of Antibiotic D-Penicillamine Based on a Dual-Mode Probe of Fluorescent Carbon Dots and Gold Nanoparticles. J Fluoresc 28, 1405–1412 (2018). https://doi.org/10.1007/s10895-018-2307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2307-3

Keywords

Navigation