Skip to main content
Log in

8-Hydroxyquinoline Functionalized Graphene Oxide: an Efficient Fluorescent Nanosensor for Zn2+ in Aqueous Media

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A nanosensor, based on 8-hydroxyquinoline functionalized graphene oxide, was developed for the fluorescence detection of Zn2+. It showed high selectivity and sensitivity for Zn2+ion in aqueous solution over other metal ions such as Li+, Na+, Ca2+, Mg2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Ni2+, Pb2+, Fe2+, Fe3+and Cr3+. Due to the linearity of the emission intensity toward Zn2+ concentration, fluorescent technique could be used for the detection of Zn2+ ion even at very low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nozaki YE, Steele J, Thorpe S, Turekian K (2001) Encyclopedia of ocean sciences. JH, Steele

    Google Scholar 

  2. Clearwater SJ, Farag A, Meyer J (2002) Bioavailability and toxicity of dietborne copper and zinc to fish. Comp Biochem Physiol C Toxicol Pharmacol 132(3):269–313

    Article  PubMed  Google Scholar 

  3. Cummings JE, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care 19(3):215–240

    Article  Google Scholar 

  4. Joseph W (1985) Stripping analysis-principles, instrumentation and application. VCH Publishers Inc, USA

    Google Scholar 

  5. Eftekhari-Sis B, Malekan F, Younesi Araghi H (2018) CdSe quantum dots capped with p-nitrophenyldiazenylphenyloxadiazole: a nanosensor for Cd2+ ions in aqueous media. Can J Chem 96(4):371–376

    Article  CAS  Google Scholar 

  6. Eftekhari-Sis B, Samadneshan K, Vahdati-Khajeh S (2018) Design and synthesis of Nanosensor based on CdSe quantum dots functionalized with 8-Hydroxyquinoline: a fluorescent sensor for detection of Al 3+ in aqueous solution. J Fluoresc 28:767–774

    Article  CAS  PubMed  Google Scholar 

  7. Eftekhari-Sis B, Mirdoraghi S (2016) Graphene oxide-terpyridine conjugate: a highly selective colorimetric and sensitive fluorescence Nano-chemosensor for Fe2+ in aqueous media. Nanochem Res 1(2):214–221

  8. Lin HY, Chen TY, Liu CK, Wu AT (2016) A fluorescent chemosensor based on naphthol for detection of Zn2+. Luminescence 31(1):236–240

    Article  CAS  PubMed  Google Scholar 

  9. Xu Z, Liu X, Pan J, Spring DR (2012) Coumarin-derived transformable fluorescent sensor for Zn 2+. Chem Commun 48(39):4764–4766

    Article  CAS  Google Scholar 

  10. Zhu S, Zhang J, Janjanam J, Vegesna G, Luo F-T, Tiwari A, Liu H (2013) Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc (II). J Mater Chem B 1(12):1722–1728

    Article  CAS  Google Scholar 

  11. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777

    Article  CAS  Google Scholar 

  12. Sanchez VC, Jachak A, Hurt RH, Kane AB (2011) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  CAS  PubMed  Google Scholar 

  14. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  PubMed  Google Scholar 

  15. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  PubMed  Google Scholar 

  16. Kundu A, Layek RK, Kuila A, Nandi AK (2012) Highly fluorescent graphene oxide-poly (vinyl alcohol) hybrid: an effective material for specific Au3+ ion sensors. ACS Appl Mater Interfaces 4(10):5576–5582

    Article  CAS  PubMed  Google Scholar 

  17. Zhao C, Ma L, You J, Qu F, Priestley RD (2016) EDTA-and amine-functionalized graphene oxide as sorbents for Ni (II) removal. Desalin Water Treat 57(19):8942–8951

    Article  CAS  Google Scholar 

  18. Eftekhari-Sis B, Karaminejad S, Karimi F (2016) A Nano-biosensor for the detection of 185delAG mutation in BRCA1 gene, leading to breast Cancer. Cancer Investig 34(9):431–439

    Article  CAS  Google Scholar 

  19. Cui Z, Zhang G, Song W, Song Y (2004) Supercritical fluid extraction of metal ions from a solid matrix with 8-Hydroxyquinoline and carbon dioxide. J Liq Chromatogr Relat Technol 27(6):985–994

    Article  CAS  Google Scholar 

  20. Gurnani V, Singh AK, Venkataramani B (2003) Cellulose functionalized with 8-hydroxyquinoline: new method of synthesis and applications as a solid phase extractant in the determination of metal ions by flame atomic absorption spectrometry. Anal Chim Acta 485(2):221–232

    Article  CAS  Google Scholar 

  21. Hao E, Meng T, Zhang M, Pang W, Zhou Y, Jiao L (2011) Solvent dependent fluorescent properties of a 1, 2, 3-triazole linked 8-hydroxyquinoline chemosensor: tunable detection from zinc (II) to Iron (III) in the CH3CN/H2O system. J Phys Chem A 115(29):8234–8241

    Article  CAS  PubMed  Google Scholar 

  22. Farruggia G, Iotti S, Prodi L, Montalti M, Zaccheroni N, Savage PB, Trapani V, Sale P, Wolf FI (2006) 8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J Am Chem Soc 128(1):344–350

    Article  CAS  PubMed  Google Scholar 

  23. Bronson RT, Bradshaw JS, Savage PB, Fuangswasdi S, Lee SC, Krakowiak KE, Izatt RM (2001) Bis-8-hydroxyquinoline-armed diazatrithia-15-crown-5 and diazatrithia-16-crown-5 ligands: possible fluorophoric metal ion sensors. J Org Chem 66(14):4752–4758

    Article  CAS  PubMed  Google Scholar 

  24. Wang F, Peng R, Sha Y (2008) Selective dendritic fluorescent sensors for Zn (II). Molecules 13(4):922–930

    Article  CAS  PubMed  Google Scholar 

  25. Kawakami J, Ohta M, Yamauchi Y, Ohzeki K (2003) 8-Hydroxyquinoline derivative as a fluorescent chemosensor for zinc ion. Anal Sci 19(10):1353–1354

    Article  CAS  PubMed  Google Scholar 

  26. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to Zn 2+ and dual-mode ratiometric response to Al 3+ in aqueous media. Chem Commun 48(7):1039–1041

    Article  CAS  Google Scholar 

  27. Narayanaswamy N, Maity D, Govindaraju T (2011) Reversible fluorescence sensing of Zn2+ based on pyridine-constrained bis (triazole-linked hydroxyquinoline) sensor. Supramol Chem 23(10):703–709

    Article  CAS  Google Scholar 

  28. Feng L, Wang C, Ma Z, Lü C (2013) 8-Hydroxyquinoline functionalized ZnS nanoparticles capped with amine groups: a fluorescent nanosensor for the facile and sensitive detection of TNT through fluorescence resonance energy transfer. Dyes Pigments 97(1):84–91

    Article  CAS  Google Scholar 

  29. Eftekhari-Sis B, Aliabad MA, Karimi F (2016) Graphene oxide based nano-biosensor for the detection of deletion mutation in exon 19 of EGFR gene, leading to lung cancer. Mater Lett 183:441–443

    Article  CAS  Google Scholar 

  30. Ghosh B, Antonio T, Reith ME, Dutta AK (2010) Discovery of 4-(4-(2-((5-Hydroxy-1, 2, 3, 4-tetrahydronaphthalen-2-yl)(propyl) amino) ethyl) piperazin-1-yl) quinolin-8-ol and its analogues as highly potent dopamine D2/D3 agonists and as iron chelator: in vivo activity indicates potential application in symptomatic and neuroprotective therapy for Parkinson’s disease. J Med Chem 53(5):2114–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alibolandi M, Mohammadi M, Taghdisi SM, Ramezani M, Abnous K (2017) Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr Polym 155:218–229

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    Article  CAS  PubMed  Google Scholar 

  36. He Y, Wang J, Zhang H, Zhang T, Zhang B, Cao S, Liu J (2014) Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J Mater Chem A 2(25):9548–9558

    Article  CAS  Google Scholar 

  37. Khan S, Kazi TG, Baig JA, Kolachi NF, Afridi HI, Shah AQ, Kandhro GA, Kumar S (2009) Separation and preconcentration of trace amounts of aluminum ions in surface water samples using different analytical techniques. Talanta 80(1):158–162

    Article  CAS  PubMed  Google Scholar 

  38. Xue L, Liu Q, Jiang H (2009) Ratiometric Zn2+ fluorescent sensor and new approach for sensing Cd2+ by ratiometric displacement. Org Lett 11(15):3454–3457

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Lin W, Li W (2012) Single fluorescent probe displays a distinct response to Zn2+ and Cd2+. Chem Eur J 18(43):13629–13632

    Article  CAS  PubMed  Google Scholar 

  40. Mameli M, Aragoni MC, Arca M, Caltagirone C, Demartin F, Farruggia G, De Filippo G, Devillanova FA, Garau A, Isaia F (2010) A selective, nontoxic, OFF–ON fluorescent molecular sensor based on 8-Hydroxyquinoline for probing Cd2+ in living cells. Chem Eur J 16(3):919–930

    Article  CAS  PubMed  Google Scholar 

  41. Aragoni MC, Arca M, Bencini A, Caltagirone C, Garau A, Isaia F, Light ME, Lippolis V, Lodeiro C, Mameli M (2013) Zn 2+/cd 2+ optical discrimination by fluorescent chemosensors based on 8-hydroxyquinoline derivatives and sulfur-containing macrocyclic units. Dalton Trans 42(40):14516–14530

    Article  CAS  PubMed  Google Scholar 

  42. Bao Y, Liu B, Wang H, Du F, Bai R (2011) A highly sensitive and selective ratiometric Cd2+ fluorescent sensor for distinguishing Cd2+ from Zn2+ based on both fluorescence intensity and emission shift. Anal Methods 3(6):1274–1276

    Article  CAS  Google Scholar 

  43. Sarkar S, Shunmugam R (2013) Unusual red shift of the sensor while detecting the presence of Cd2+ in aqueous environment. ACS Appl Mater Interfaces 5(15):7379–7383

    Article  CAS  PubMed  Google Scholar 

  44. Jiao L, Meng T, Chen Y, Zhang M, Wang X, Hao E (2010) Triazolyl-linked 8-hydroxyquinoline dimer as a selective turn-on fluorosensor for Cd2+. Chem Lett 39(8):803–805

    Article  CAS  Google Scholar 

  45. Persaud G, Cantwell FF (1992) Determination of free magnesium ion concentration in aqueous solution using 8-hydroxyquinoline immobilized on a nonpolar adsorbent. Anal Chem 64(1):89–94

    Article  Google Scholar 

  46. Jin X, Yang Z, Li T, Wang B, Li Y, Yan M, Liu C, An J (2013) 8-hydroxyquinoline-5-carbaldehyde-(benzotriazol-1′-acetyl) hydrazone as a potential Mg2+ fluorescent chemosensor. J Coord Chem 66(2):300–305

    Article  CAS  Google Scholar 

  47. Prodi L, Bolletta F, Montalti M, Zaccheroni N, Savage PB, Bradshaw JS, Izatt RM (1998) A fluorescent sensor for magnesium ions. Tetrahedron Lett 39(31):5451–5454

    Article  CAS  Google Scholar 

  48. Das R, Travers KJ, Bai Y, Herschlag D (2005) Determining the Mg2+ stoichiometry for folding an RNA metal ion core. J Am Chem Soc 127(23):8272–8273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by research council of the University of Maragheh. Iran Science Elites Federation (ISEF) was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bagher Eftekhari-Sis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhari-Sis, B., Rezazadeh, Z., Akbari, A. et al. 8-Hydroxyquinoline Functionalized Graphene Oxide: an Efficient Fluorescent Nanosensor for Zn2+ in Aqueous Media. J Fluoresc 28, 1173–1180 (2018). https://doi.org/10.1007/s10895-018-2281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2281-9

Keywords

Navigation