Skip to main content
Log in

Comparative DFT Computational Studies with Experimental Investigations for Novel Synthesized Fluorescent Pyrazoline Derivatives

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel series of pyrazoline derivatives were synthesized and their spectral properties were characterized via FT-IR, 1H, and 13C NMR. The electronic transitions and fluorescence properties were tracked via UV-Vis and emission spectrometry. The density functional theory (DFT) calculations have been also computed to get spot onto the geometry, electronic transitions and spectroscopic properties theoretically that has been compared with the encountered experimental ones. Moreover, the dipole moment, optimized energy, HOMO - LUMO energies and band gaps were calculated for novel candidates pyrazoline derivatives with highly fluorescence quantum yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lone I, Khan K, Fozdar B (2014) Synthesis, physicochemical properties, antimicrobial and antioxidant studies of pyrazoline derivatives bearing a pyridyl moiety. Med Chem Res 23:363–369

    Article  CAS  Google Scholar 

  2. Lv P-C, Li D-D, Li Q-S, Lu X, Xiao Z-P, Zhu H-L (2011) Synthesis, molecular docking and evaluation of thiazolylpyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg Med Chem Lett 21:5374–5377

    Article  PubMed  CAS  Google Scholar 

  3. Babu VH, Sridevi C, Joseph A, Srinivasan KK (2008) Synthesis and biological evaluation of some novel pyrazolines. Indian J Pharm Sci 69:470–473

    Google Scholar 

  4. West RC (ed) (1974) CRC Handbook of Chemistry and Physics, 5th edn. CRC Press, Cleveland

    Google Scholar 

  5. Li JF, Guan B, Li DX, Dong C (2007) Study on the fluorescence properties of a new intramolecular charge transfer compound 1,5- diphenyl-3-(N-ethylcarbazole-3-yl)-2-pyrazoline. Spectrochim Acta A 68:404–408

    Article  CAS  Google Scholar 

  6. Hasan A, Abbas A, Akhtar MN (2011) Synthesis, characterization and fluorescent property evaluation of 1, 3, 5-triaryl-2-pyrazolines. Molecules 16:7789–7802

    Article  PubMed  CAS  Google Scholar 

  7. Zimmer H, Armbruster DC, Trauth LJ (1965) The aldol condensation of aromatic aldehydes with N-Acetyl-2-pyrrolidinone: synthesis of 3-Arylidene-2-pyrrolidinones. J Heterocyclic Chem 2:171

  8. Hedaya E, Theodoropulos S (1968) The preparation and reactions of stable phosphorus ylides derived from maleic anhydrides, maleimides or isomaleimides. Tetrahedron 24:2241

    Article  CAS  Google Scholar 

  9. Ichikawa M, Masuhara H, Maus M, Rettig W (1996) Radiative depopulation of the excited intramolecular charge-transfer state of 9-(4-(N,N-Dimethylamino)phenyl)phenanthrene. J Am Chem Soc 118:2892

    Article  Google Scholar 

  10. Abbas A, Hussain S, Hafeez N, Naseer MM (2014) Synthesis and spectral characterization of new homologous 1,3,5-triaryl-2-pyrazolines: influence of alkyloxy chain length on fluorescence. Spectrochim Acta A 133:182–189

    Article  CAS  Google Scholar 

  11. Lu B, Zhang J, Wang M, Zhou Y, Chen X (2012) Synthesis and fluorescent property of pyrazoline derivatives. Chin J Chem 30:1345–1350

    Article  CAS  Google Scholar 

  12. Ozdemir A, Turan-Zitouni G, Kaplancikli ZA et al (2007) Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur J Med Chem 42:403–409

    Article  PubMed  CAS  Google Scholar 

  13. Bian B, Ji S-J, Shi H-B (2008) Synthesis and fluorescent property of some novel bischromophore compounds containing pyrazoline and naphthalimide groups. Dyes Pigments 76:348–352

    Article  CAS  Google Scholar 

  14. Babar A, Khalid H, Ayub K, Saleem S, Waseem A, Mahmood T, Munawar MA, Abbas G, Khan AF (2014) Synthesis, characterization and density functional theory study of some new 2-anilinothiazoles. J Mol Struct 1072:221–227

    Article  CAS  Google Scholar 

  15. Kapturkiewicz A, Herbich J, Karpiuk J, Nowacki J (1997) Intramolecular radiative and radiationless charge recombination processes in donor−acceptor carbazole derivatives. J Phys Chem A 101:2332

    Article  CAS  Google Scholar 

  16. Braun D, Retting W, Delmond S, Letard JF, Lapouyade R (1997) Amide derivatives of DMABN: a new class of dual fluorescent compounds. J Phys Chem A 101:6836

    Article  CAS  Google Scholar 

  17. Wang P, Wu S (1995) Spectroscopy and photophysics of bridged enone derivatives: effect of molecular structure and solvent. J Photochem Photobiol A Chem 86:109

    Article  CAS  Google Scholar 

  18. Wang SL, Ho TI (2000) Substituent effects on intramolecular charge-transfer behaviour of styrylheterocycles. J Photochem Photobiol A Chem 135:119

    Article  CAS  Google Scholar 

  19. Hashimoto M, Hamaguchi H (1995) Molecular layer-by-layer engineering of superconducting and superionic materials in the (AgI)Bi2Sr2CaCu2Oy system. J Phys Chem 99:7875

    Article  CAS  Google Scholar 

  20. Grabowski ZR (1993) Electron transfer in flexible molecules and molecular ions. Pure Appl Chem 65:1751

    Article  CAS  Google Scholar 

  21. Yan ZL, Hu GW, Wu SK (1995) A study on the photophysical 8ehaviors of 1, 5一Diphenyl-3-naphthyl-2-pyrazoline compound. Acta Chim Sin 53:227

  22. Wagner A, Schellhammer CW, Petersen S (1966) Aryl‐Δ2‐pyrazolines as optical brighteners. Angew Chem Int Ed Eng 5:699

    Article  CAS  Google Scholar 

  23. Wang P, Komatsuzaki NO, Himeda Y, Sugihara H, Arakawa H, Kasuga K (2001) 3-(2-Pyridyl)-2-pyrazoline derivatives: novel fluorescent probes for Zn2+ion. Tetrahedron Lett 42:9199

    Article  CAS  Google Scholar 

  24. Girgis AS, Basta AH, El-Saied H, Mohamed MA, Bedair AH, Salim AS (2018) Synthesis, quantitative structure–property relationship study of novel fluorescence active 2-pyrazolines and application. R Soc Open Sci 5:171964

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc, Wallingford CT

  26. Dennington R, Keith TA, Millam JM (2016) GaussView, Version 6, Semichem Inc., Shawnee Mission, KS

  27. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J ChemPhys 98:5648–5652

    CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physiol Res B37:785–789

    Google Scholar 

  29. Chinnaraja D, Rajalakshmi R, Srinivasan T, VelmuruganbJ D (2014) Jayabharathi, Spectral studies of 2-pyrazoline derivatives: Structural elucidation through single crystal XRD and DFT calculations. Spectrochim Acta A 124:30–33

    Article  CAS  Google Scholar 

  30. Ibrahim MM, Al-Refai M, Ayub K, Ali BF (2016) Synthesis, Spectral Characterization and Fluorescent Assessment of 1,3,5-Triaryl-2-pyrazoline Derivatives: Experimental and Theoretical Studies. J Fluoresc 26:1447–1455

    Article  PubMed  CAS  Google Scholar 

  31. Agrawal M, Sonar PK, Saraf SK (2011) Synthesis of 1,3,5-trisubstituted pyrazoline nucleus containing compounds and screening for antimicrobial activity. Med Chem Res 21:3376–3381

    Article  CAS  Google Scholar 

  32. Bhandari S, Tripathi AC, Saraf SK (2013) Novel 2-pyrazoline derivatives as potential anticonvulsant agents. Med Chem Res 22:5290–5296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank anyone who helped us to publish these valuable data presented in our manuscript.

Funding

Authors carried all experiments on their expenses without support from any organization.

Author information

Authors and Affiliations

Authors

Contributions

The authors worked jointly on every section of the paper. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmad Saed Salim.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Our manuscript didn’t contain any individual person’s data in any form.

Competing Interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 5395 kb)

ESM 2

(DOCX 5070 kb)

ESM 3

(DOCX 5377 kb)

ESM 4

(DOCX 5862 kb)

ESM 5

(DOC 66 kb)

ESM 6

(DOC 61 kb)

ESM 7

(DOC 64 kb)

ESM 8

(DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, A.S., Girgis, A.S., Basta, A.H. et al. Comparative DFT Computational Studies with Experimental Investigations for Novel Synthesized Fluorescent Pyrazoline Derivatives. J Fluoresc 28, 913–931 (2018). https://doi.org/10.1007/s10895-018-2254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2254-z

Keywords

Navigation