Skip to main content
Log in

Physicochemical and Antioxidant Properties of Riboflavin in Dextran70/HSA Systems

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Physicochemical properties of Riboflavin (Vitamin B2) (RF), in Dextran 70 (Dx70) (a biological relevant glucidic type macromolecule) and Human Serum Albumin (HSA) (a carrier/transport protein) based system, have been studied by absorption, fluorescence, circular dichroism and electrochemistry. No significant changes on the fluorescence of RF in Dx70/HSA systems with and without the influence of temperature (30–60 °C range) were observed. No changes on the intrinsic Tryptophan fluorescence in Dx70/RF/HSA system, have been evidenced. HSA secondary structure when RF binds in Dx70/RF/HSA systems, with a renaturation effect of Dx70, was found. In Dx70/RF/HSA system the major process which RF undergoes is the proton transfer, Ered = −0.43 V. Using the chemiluminescence method, an improvement of the antioxidant activity of RF into the Dx70/RF/HSA system, was also found. RF concentration in Dx70/RF/HSA systems is important in RF oxidative damages when it reacts with target molecules and thus promotes their oxidation. The results have relevance in the oxidative stress process and in pharmaceutical formulations containing RF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Bensasson RV, Land EJ, Truscott TG (1983) Flash photolysis and pulse radiolysis in Biology and Medicine. Pergamon Press, Oxford

    Google Scholar 

  2. Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296

    Article  PubMed  CAS  Google Scholar 

  3. Peters T (1985) Serum albumin. In: In Advances in protein chemistry, vol 37. Academic Press, New York, pp 161–245

    Google Scholar 

  4. Carter DC, Ho JX (1994) Serum albumin: structure. In: In Advances in protein chemistry, vol 45. Academic Press, New York, pp 153–203

    Google Scholar 

  5. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    PubMed  CAS  Google Scholar 

  6. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  7. L.J. Kaplan, J.A. Kellum, Fluids, pH Ions and electrolytes, Curr Opin Crit Care, 16, 232–331, 2010

  8. Taverna M, Marie A-L, Guidet B (2013) Specifiec antioxidant properties of human serum albumin. Ann Intensive Care 3:1–7

    Article  CAS  Google Scholar 

  9. Carballal S, Radi R, Kirk MC, Barnes S, Freeman BA, Alvarez B (2003) Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry 42:9906–9914

    Article  PubMed  CAS  Google Scholar 

  10. Cantin AM, Paquette B, Richter M, Larivée P (2000) Albumin-mediated regulation of cellular glutathione and nuclear factor kappa B activation. Am J Respir Crit Care Med 162:1539–1546

    Article  PubMed  CAS  Google Scholar 

  11. Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41:1211–1219

    Article  PubMed  CAS  Google Scholar 

  12. J. F. Robyt, Essentials of Carbohydr Chem, ed. J.F. Robyt, Springer, Ney-York, 1998; A. L. Bhavani, J. Nisha, Dextran - The polysaccharide with versatile uses, Int J Pharm Bio Sci, 1:569–573, 2010

  13. M. Varrier, M. Ostermann, Fluid composition and clinical effect. In Nephrology – critical care clinics, Ed. J.A. Kellum, pp. 823–838, 2015

  14. Voicescu M, Neacsu G, Beteringhe A, Craciunescu O, Tatia R, Moldovan L (2017) Antioxidant and cytotoxic properties of riboflavin in PEG/BSA systems. Chem Pap 71:1107–1117. https://doi.org/10.1007/s11696-016-0057-8

    Article  CAS  Google Scholar 

  15. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  PubMed  CAS  Google Scholar 

  16. Whitmore L, Wallace BA (2004) DICHROWEB: an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lobley A, Whitmore L, Wallace BA (2002) DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18:211–212

    Article  PubMed  CAS  Google Scholar 

  18. Compton LA, Johnson WC Jr (1986) Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem 155:155–167

    Article  PubMed  CAS  Google Scholar 

  19. Manavalan P, Johnson WC Jr (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167:76–85

    Article  PubMed  CAS  Google Scholar 

  20. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from CD spectra: comparison of CONTIN, SELCON and CDSSTR methods with an expanded reference set. Anal Biochem 287(2):252–260

    Article  PubMed  CAS  Google Scholar 

  21. Mao D, Wachter E, Wallace BA (1982) Folding of the H+-ATPase proteolipid in phospholipid vesicles. Biochemistry 21:4960–4968

    Article  PubMed  CAS  Google Scholar 

  22. Vasilescu M, Voicescu M, Lemmetyinen H, Meghea A (2004) The oxidative activity of riboflavin studied by luminescence methods. Rom J Biochem 41:51–63

    CAS  Google Scholar 

  23. Voicescu M, Ionita G, Constantinescu T, Vasilescu M (2006) The oxidative activity of riboflavin studied by luminescence methods: the effect of cysteine, arginine, lysine and histidine amino acids. Rev Roum Chim 51:683–690

    CAS  Google Scholar 

  24. Voicescu M, Ionita G, Vasilescu M, Meghea A (2006) The effect of cyclodextrins on the luminol-hydrogen peroxide chemiluminescence. J Incl Phenom Macrocyclic Chem 54:217–219

    Article  CAS  Google Scholar 

  25. Voicescu M, Ionita G, Beteringhe A, Vasilescu M, Meghea A (2008) The antioxidative activity of riboflavin in the presence of antipyrine. Spectroscopic studies. J Fluoresc 18:953–959

    Article  PubMed  CAS  Google Scholar 

  26. Voicescu M, Ion R, Meghea A (2010) Evaluation of the oxidative activity of some free base porphyrins by a chemiluminescence method. J Serb Chem Soc 75:333–341

    Article  CAS  Google Scholar 

  27. Teale FWJ, Weber G (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem J 65:476–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Voicescu M, Heinrich M, Hellwig P (2009) Steady - state and time - resolved fluorescence analysis of tyrosine-histidine model compounds. J Fluoresc 19:257–266

    Article  PubMed  CAS  Google Scholar 

  29. Voicescu M, El Y, Khoury D, Martel M, Heinrich PH (2009) Spectroscopy analysis of tyrosine derivatives: on the role of the tyrosine - histidine covalent linkage in cytochrome c oxidase. J Phys Chem B 113:13429–13436

    Article  PubMed  CAS  Google Scholar 

  30. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed.; Spinger, Berlin Heidelberg, Germany, 2006

  31. Alam MM, Qais FA, Ahmad I, Alam P, Khan RH, Naseem I (2017) Multi-spectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin. J Biomol Struct Dyn 36:1–34. https://doi.org/10.1080/07391102.2017.1298470

    Article  CAS  Google Scholar 

  32. Voicescu M, Angelescu DG, Ionescu S, Teodorescu VS (2013) Spectroscopic analysis of the riboflavin - serum albumins interaction on silver nanoparticles. J Nanopart Res 15:1555. https://doi.org/10.1007/s11051-013-1555-z

    Article  CAS  Google Scholar 

  33. Memarpoor-Yazdi M, Mahaki H (2013) Probing the interaction of human serum albumin with vitamin B2 (riboflavin) and L-arginine (L-Arg) using multi-spectroscopic, molecular modeling and zeta potential techniques. J Lumin 136:150–159

    Article  CAS  Google Scholar 

  34. Voicescu M, Ionescu S (2015) 3-Hydroxyflavone - bovine serum albumin interaction in dextran medium. J Serb Chem Soc 80(4):517–528

    Article  CAS  Google Scholar 

  35. Froehlich E, Mandeville JS, Jennings CJ, Sedaghat-Herati R, Tajmir-Riahi HA (2009) Dendrimers Bind Human Serum Albumin. J Phys Chem B 113:6986–6993

    Article  PubMed  CAS  Google Scholar 

  36. Ahmed Ouameur A, Marty R, Tajmir-Riahi HA (2005) Human serum albumin complexes with chlorophyll and Chlorophyllin. Biopolymers 77:129–136

    Article  PubMed  CAS  Google Scholar 

  37. Voicescu M, Nistor CL, Meghea A (2015) Insights into the antioxidant activity of some flavones on silver nanoparticles using the Chemiluminescence method. J Lumin 157:243–248

    Article  CAS  Google Scholar 

  38. Taverna M, Marie A-L, Mira J-P, Guidet B (2013) Specific antioxidant properties of human serum albumin. Ann Intensive Care 3:4. https://doi.org/10.1186/2110-5820-3-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gutteridge JM (1986) Antioxidant properties of the proteins caeruloplasmin, albumin and transferrin. A study of their activity in serum and synovial fluid from patients with rheumatoid arthritis. Biochim Biophys Acta 869:119–127

    Article  PubMed  CAS  Google Scholar 

  40. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  PubMed  CAS  Google Scholar 

  41. Kawakami A, Kubota K, Yamada N, Tagami U, Takehana K, Sonaka I, Suzuki E, Hirayama K (2006) Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions. FEBS J 273:3346–3357

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was done within the research programme “Quantum Chemistry and Molecular Structure” of the Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Voicescu.

Ethics declarations

Conflict of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voicescu, M., Ionescu, S. & Lete, C. Physicochemical and Antioxidant Properties of Riboflavin in Dextran70/HSA Systems. J Fluoresc 28, 889–896 (2018). https://doi.org/10.1007/s10895-018-2251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2251-2

Keywords

Navigation