Advertisement

Journal of Fluorescence

, Volume 28, Issue 2, pp 605–613 | Cite as

Monitoring Subcellular Stress Response via a Cell-permeant Rotor Dye

  • Olivia Stiehl
  • Andreas Veres
  • Matthias Weiss
ORIGINAL ARTICLE

Abstract

Monitoring the response of cells to environmental challenges, e.g. after exposure to oxidative stress or pharmaceutical substances, not only provides clues for fundamental biological processes but can also serve as a valuable tool in drug development. Obtaining such insights on the subcellular level in a rapid and simple manner is therefore of major importance. Ideally, such an approach not only reports on compartment-specific responses but also allows for an inherent subcellular segmentation using the same data set. Here, we propose such a method based on fluorescence lifetimes of a single cell-permeant rotor dye with a broad emission spectrum. Using a k-means clustering approach, a straightforward, unsupervised, and rapid segmentation protocol allows for subcellular segmentation in addition to monitoring the differential response of these compartments to environmental stress, e.g. induced by hydrogen peroxide or the widely used chemotherapeutic cisplatin. Based on our data we suggest that our automatable approach can be a valuable and robust tool for pharmaceutical screening applications.

Keywords

Functional imaging Fluorescence lifetime Segmentation Molecular rotor Subcellular analysis Stress response Cisplatin 

References

  1. 1.
    Keller JP, Looger LL (2016) The oscillating stimulus transporter assay, OSTA: quantitative functional imaging of transporter protein activity in time and frequency domains. Mol Cell 64 (1):199–212.  https://doi.org/10.1016/j.molcel.2016.09.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Doria F, Folini M, Grande V, Cimino-Reale G, Zaffaroni N, Freccero M (2015) Naphthalene diimides as red fluorescent pH sensors for functional cell imaging. Org Biomol Chem 13:570–576.  https://doi.org/10.1039/C4OB02054E CrossRefPubMedGoogle Scholar
  3. 3.
    Braunagel M, Graser A, Reiser M, Notohamiprodjo M (2014) The role of functional imaging in the era of targeted therapy of renal cell carcinoma. World J Urol 32(1):47–58.  https://doi.org/10.1007/s00345-013-1074-7 CrossRefPubMedGoogle Scholar
  4. 4.
    Donato MT, Jiménez N, Castell JV, Gómez-Lechón MJ (2004) Fluorescence-based assays for screening nine cytochrome p450 (p450) activities in intact cells expressing individual human p450 enzymes. Drug Metab Dispos 32(7):699–706.  https://doi.org/10.1124/dmd.32.7.699 CrossRefPubMedGoogle Scholar
  5. 5.
    Hidalgo G, Burns A, Herz E, Hay AG, Houston PL, Wiesner U, Lion LW (2009) Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors ∇‡. Appl Environ Microbiol 75:7426. http://aem.asm.org/content/75/23/7426 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M (2016) A rotational BODIPY nucleotide: an environment-sensitive fluorescence-lifetime probe for DNA interactions and applications in live-cell microscopy. Angew Chem Int Ed 55:174CrossRefGoogle Scholar
  7. 7.
    Kuimova MK (2012) Molecular rotors image intracellular viscosity. Chimia (Aarau) 66(4):159–165.  https://doi.org/10.2533/chimia.2012.159 CrossRefGoogle Scholar
  8. 8.
    Haidekker MA, Theodorakis EA (2007) Molecular rotors–fluorescent biosensors for viscosity and flow. Org Biomol Chem 5(11):1669–1678CrossRefPubMedGoogle Scholar
  9. 9.
    Wu YL, Štefl M, Olzyńska A, Hof M, Yahioglu G, Yip P, Casey DR, Ces O, Humpolíčková J, Kuimova MK (2013) Molecular rheometry: direct determination of viscosity in Lo and Ld lipid phases via fluorescence lifetime imaging. Phys Chem Chem Phys 15:14986CrossRefPubMedGoogle Scholar
  10. 10.
    Alberts B (2015) Molecular biology of the cell, 6th edn. Garland Science, Taylor and Francis Group, New YorkGoogle Scholar
  11. 11.
    Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224CrossRefPubMedGoogle Scholar
  12. 12.
    Nikić I, Plass T, Schraidt O, Szymański J, Briggs JA, Schultz C, Lemke EA (2014) Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew Chem Int Ed Engl 53(8):2245–2249.  https://doi.org/10.1002/anie.201309847 CrossRefPubMedGoogle Scholar
  13. 13.
    Niehörster T, Löschberger A, Gregor I, Krämer B, Rahn HJ, Patting M, Koberling F, Enderlein J, Sauer M (2016) Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods 13(3):257–262.  https://doi.org/10.1038/nmeth.3740 CrossRefPubMedGoogle Scholar
  14. 14.
    Ramadass R, Bereiter-Hahn J (2008) How DASPMI reveals mitochondrial membrane potential: fluorescence decay kinetics and steady-state anisotropy in living cells. Biophys J 95(8):4068–4076.  https://doi.org/10.1529/biophysj.108.135079 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129CrossRefGoogle Scholar
  16. 16.
    Ramadass R, Bereiter-Hahn J (2007) Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays. J Phys Chem B 111(26):7681–7690.  https://doi.org/10.1021/jp070378k CrossRefPubMedGoogle Scholar
  17. 17.
    Stiehl O, Weiss M (2016) Heterogeneity of crowded cellular fluids on the meso- and nanoscale. Soft Matter 12:9413CrossRefPubMedGoogle Scholar
  18. 18.
    Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3):402–413.  https://doi.org/10.1016/j.cell.2010.12.031 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H (1996) Free radical-independent protection by nerve growth factor and Bcl-2 of PC12 cells from hydrogen peroxide-triggered apoptosis. J Biochem 120(3):540–546CrossRefPubMedGoogle Scholar
  20. 20.
    Jordan P, Carmo-Fonseca M (1998) Cisplatin inhibits synthesis of ribosomal RNA in vivo. Nucleic Acids Res 26(12):2831– 2836CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16CrossRefPubMedGoogle Scholar
  22. 22.
    Digman M, Gratton E (2012) In: Egelman EH (ed) Comprehensive biophysics. Elsevier, Amsterdam, pp 24–38Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Experimental Physics IUniversity of BayreuthBayreuthGermany

Personalised recommendations