Skip to main content
Log in

Novel Zinc(II) Bis(Dipyrromethenate)-Doped Ethyl Cellulose Sensors for Acetone Vapor Fluorescence Detection

  • FLUORESCENCE NEWS ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, we report on the results of spectrofluorimetric study of new fluorescent sensor based on [Zn2L2] doped in ethyl cellulose. The sensor optical signal is based on the rapid fluorescence quenching in the presence of acetone vapor. The acetone vapor detection limit in a gas mixture by means of sensor based on [Zn2L2] doped in ethyl cellulose is 1.68 ppb. Being highly sensitive to the acetone acetone presence, instant in response and easy to use, the sensor can find an application for the noninvasive diagnostics of diabetes as well as for the monitoring of the content of acetone acetone in the air at industrial and laboratory facilities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tisch U, Haick H (2014) Chemical sensors for breath gas analysis: the latest developments at the breath analysis summit 2013. J Breath Res 8:27103. https://doi.org/10.1088/1752-7155/8/2/027103

    Article  CAS  Google Scholar 

  2. Arduini F, Cinti S, Scognamiglio V et al (2017) How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. a review. Anal Chim Acta 959:15–42. https://doi.org/10.1016/j.aca.2016.12.035

    Article  PubMed  CAS  Google Scholar 

  3. Pleil JD, Hansel A (2012) Submarines, spacecraft and exhaled breath. J Breath Res 6:19001. https://doi.org/10.1088/1752-7155/6/1/019001

    Article  Google Scholar 

  4. Penza M, Rossi R, Alvisi M, Serra E (2010) Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology 21:105501. https://doi.org/10.1088/0957-4484/21/10/105501

    Article  PubMed  CAS  Google Scholar 

  5. Hunter GW, Xu JC, Biaggi-Labiosa AM et al (2011) Smart sensor systems for human health breath monitoring applications. J Breath Res 5:37111. https://doi.org/10.1088/1752-7155/5/3/037111

    Article  CAS  Google Scholar 

  6. Hunter GW, Dweik RA (2008) Applied breath analysis: an overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications. J Breath Res 2:37020. https://doi.org/10.1088/1752-7155/2/3/037020

    Article  CAS  Google Scholar 

  7. Di Natale C, Paolesse R, Martinelli E, Capuano R (2014) Solid-state gas sensors for breath analysis: a review. Anal. Chim. Acta 824:1–17. https://doi.org/10.1016/j.aca.2014.03.014

    Article  PubMed  CAS  Google Scholar 

  8. Amann A, Miekisch W, Schubert J et al (2014) Analysis of exhaled breath for disease detection. Annu Rev Anal Chem 7:455–482. https://doi.org/10.1146/annurev-anchem-071213-020043

    Article  CAS  Google Scholar 

  9. Grabowska-Polanowska B, Faber J, Skowron M et al (2013) Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A 1301:179–189. https://doi.org/10.1016/j.chroma.2013.05.012

    Article  PubMed  CAS  Google Scholar 

  10. Hanouneh IA, Zein NN, Cikach F et al (2014) The breathprints in patients with liver disease identify novel breath biomarkers in alcoholic hepatitis. Clin Gastroenterol Hepatol 12:516–523. https://doi.org/10.1016/j.cgh.2013.08.048

    Article  PubMed  CAS  Google Scholar 

  11. Blaikie TPJ, Edge JA, Hancock G et al (2014) Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes. J Breath Res 8:46010. https://doi.org/10.1088/1752-7155/8/4/046010

    Article  CAS  Google Scholar 

  12. Tanda N, Hinokio Y, Washio J et al (2014) Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph. J Breath Res 8:46008. https://doi.org/10.1088/1752-7155/8/4/046008

    Article  CAS  Google Scholar 

  13. Righettoni M, Schmid A, Amann A, Pratsinis SE (2013) Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J Breath Res 7:37110. https://doi.org/10.1088/1752-7155/7/3/037110

    Article  CAS  Google Scholar 

  14. Toyooka T, Hiyama S, Yamada Y (2013) A prototype portable breath acetone analyzer for monitoring fat loss. J Breath Res 7:36005. https://doi.org/10.1088/1752-7155/7/3/036005

    Article  CAS  Google Scholar 

  15. Righettoni M, Tricoli A (2011) Toward portable breath acetone analysis for diabetes detection. J Breath Res 5:37109. https://doi.org/10.1088/1752-7155/5/3/037109

    Article  CAS  Google Scholar 

  16. Fan G-T, Yang C-L, Lin C-H et al (2014) Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta 120:386–390. https://doi.org/10.1016/j.talanta.2013.12.025

    Article  PubMed  CAS  Google Scholar 

  17. Deng C, Zhang J, Yu X et al (2004) Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B 810:269–275. https://doi.org/10.1016/j.jchromb.2004.08.013

    Article  CAS  Google Scholar 

  18. Schwarz K, Filipiak W, Amann A (2009) Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res 3:27002. https://doi.org/10.1088/1752-7155/3/2/027002

    Article  CAS  Google Scholar 

  19. Zhang H, Kulkarni A, Kim H et al (2011) Detection of acetone vapor using graphene on polymer optical fiber. J Nanosci. Nanotechnol 11:5939–5943

    Article  PubMed  CAS  Google Scholar 

  20. Arias Espinoza JD, Sazhnikov V, Smits ECP et al (2014) Gas response behaviour and photochemistry of borondiketonate in acrylic polymer matrices for sensing applications. J Fluoresc 24:1735–1744. https://doi.org/10.1007/s10895-014-1462-4

    Article  PubMed  CAS  Google Scholar 

  21. Guseva GB, Ksenofontov AA, Antina EV (2017) The influence of structural factors on the composition, spectral-luminescent properties and thermal stability of zinc(II) bis(dipyrromethenate)s crystal solvates with amines. J Mol Struct 1130:385–394. https://doi.org/10.1016/j.molstruc.2016.10.048

    Article  CAS  Google Scholar 

  22. Guseva GB, Ksenofontov AA, Antina EV et al (2016) Thermal and spectroscopic characterization of zinc(II) bis(dipyrrinate)s crystal solvates with acetone, dimethyl sulfoxide, and triethylamine. J Therm Anal Calorim 126(3):481–1490. https://doi.org/10.1007/s10973-016-5647-8

    Article  CAS  Google Scholar 

  23. Guseva GB, Antinа EV, Ksenofontov AA et al (2014) Composition and thermal stability of bis(dipyrrolylmethenato)zinc(II) crystal solvates with N,N-dimethylformamide. Thermochimica Acta 589:31–36. https://doi.org/10.1016/j.tca.2014.05.007

    Article  CAS  Google Scholar 

  24. Guseva GB, Ksenofontov AA, Antina EV et al (2016) Crystal solvates of zinc(II) bis(dipyrrinates) with triethylamine: composition, stability and spectral-luminescent properties. J Coord Chem 69(5):1–14. https://doi.org/10.1080/00958972.2016.1147562

    Article  CAS  Google Scholar 

  25. Barannikov VP, Vyugin AI, Antina EV, Krestov GA (1990) Thermochemical characteristics of the near surroundings of tetraphenylporpffln in benzene, pyridine and carbon tetrachloride. Thermochim Acta 169:103–110. https://doi.org/10.1016/0040-6031(90)80137-N

    Article  CAS  Google Scholar 

  26. Ksenofontov AA, Guseva GB, Antina EV et al (2017) Zinc(II) bis(dipyrromethenate)s crystal solvates with dimethyl sulfoxide composition, stability and spectral-luminescent properties. Sensors Actuators B Chem 251:858–868. https://doi.org/10.1016/J.SNB.2017.05.143

    Article  CAS  Google Scholar 

  27. Ksenofontov AA, Guseva GB, Antina EV, Vyugin AI (2016) Influence of structural factors and the properties of the medium on the fluorescence of Zn(II) bis(dipyrrinate)s. J Lumin 170:275–281. https://doi.org/10.1016/j.jlumin.2015.10.064

    Article  CAS  Google Scholar 

  28. Zakharova SP, Rumyantsev EV, Antina EV (2005) Coordination of alkyl-substituted biladiene-a,c by zinc(II), cadmium(II), and mercury(II) acetates in dimethylformamide. Russ J Coord Chem 31:849–855. https://doi.org/10.1007/s11173-005-0180-5

    Article  CAS  Google Scholar 

  29. Berezin MB, Antina EV, Dudina NA et al (2011) Synthesis, structure and fluorescence of a zinc(II) chelate complex with bis(2,4,7,8,9-pentamethyldipyrrolylmethen-3-yl)methane. Mendeleev Commun 21:168–170. https://doi.org/10.1016/j.mencom.2011.04.020

    Article  CAS  Google Scholar 

  30. Sheldrick WS, Engel J (1980) X-Ray crystal structure of the zinc complex of 1,2,3,7,8,12,13,17,18,19-decamethylbiladiene-a,c. J Chem Soc Chem Commun 5. https://doi.org/10.1039/c39800000005

  31. Smith JM, Van Ness HC, Abbott M, Swihart MT (2005) Introduction to chemical engineering thermodynamics, 7th edn. McGraw-Hill, Boston

  32. Puri PS, Polak J, Ruether JA (1974) Vapor-liquid equilibriums of acetone-cyclohexane and acetone-isopropanol systems at 25.deg. J Chem Eng Data 19:87–89. https://doi.org/10.1021/je60060a007

    Article  CAS  Google Scholar 

  33. Dean JA (John A, Lange NA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill

  34. Men’shikova AY, Moskalenko YE, Gribanov AV et al (2010) Sorption of vapors of aromatic compounds by cross-linked polymer particles containing luminophores: A spectroscopic study. Russ J Appl Chem 83:1997– Atmospheric 2005. https://doi.org/10.1134/S1070427210110200

    Article  CAS  Google Scholar 

  35. Khan MAH, Cooke MC, Utembe SR et al (2015) A study of global atmospheric budget and distribution of acetone using global atmospheric model stochem-cri. Atmos Environ J 112:269–277. https://doi.org/10.1016/j.atmosenv.2015.04.056

    Article  CAS  Google Scholar 

  36. Singh HB, O’Hara D, Herlth D et al (1994) Acetone in the atmosphere: distribution, sources, and sinks. J Geophys Res 99:1805. https://doi.org/10.1029/93JD00764

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Sci., Prof. L.P. Safonova and PhD D.M. Makarov for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Ksenofontov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksenofontov, A.A., Guseva, G.B., Stupikova, S.A. et al. Novel Zinc(II) Bis(Dipyrromethenate)-Doped Ethyl Cellulose Sensors for Acetone Vapor Fluorescence Detection. J Fluoresc 28, 477–482 (2018). https://doi.org/10.1007/s10895-018-2220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2220-9

Keywords

Navigation