Advertisement

Journal of Fluorescence

, Volume 28, Issue 2, pp 477–482 | Cite as

Novel Zinc(II) Bis(Dipyrromethenate)-Doped Ethyl Cellulose Sensors for Acetone Vapor Fluorescence Detection

  • Alexander A. KsenofontovEmail author
  • Galina B. Guseva
  • Svetlana A. Stupikova
  • Elena V. Antina
FLUORESCENCE NEWS ARTICLE

Abstract

In this paper, we report on the results of spectrofluorimetric study of new fluorescent sensor based on [Zn2L2] doped in ethyl cellulose. The sensor optical signal is based on the rapid fluorescence quenching in the presence of acetone vapor. The acetone vapor detection limit in a gas mixture by means of sensor based on [Zn2L2] doped in ethyl cellulose is 1.68 ppb. Being highly sensitive to the acetone acetone presence, instant in response and easy to use, the sensor can find an application for the noninvasive diagnostics of diabetes as well as for the monitoring of the content of acetone acetone in the air at industrial and laboratory facilities.

Graphical Abstract

Keywords

Zinc(II) bis(dipyrromethenate) Fluorescent sensor Acetone vapor Fluorescence quenching Detection limit 

Notes

Acknowledgements

We are grateful to Dr. Sci., Prof. L.P. Safonova and PhD D.M. Makarov for helpful discussions.

References

  1. 1.
    Tisch U, Haick H (2014) Chemical sensors for breath gas analysis: the latest developments at the breath analysis summit 2013. J Breath Res 8:27103.  https://doi.org/10.1088/1752-7155/8/2/027103 CrossRefGoogle Scholar
  2. 2.
    Arduini F, Cinti S, Scognamiglio V et al (2017) How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. a review. Anal Chim Acta 959:15–42.  https://doi.org/10.1016/j.aca.2016.12.035 CrossRefPubMedGoogle Scholar
  3. 3.
    Pleil JD, Hansel A (2012) Submarines, spacecraft and exhaled breath. J Breath Res 6:19001.  https://doi.org/10.1088/1752-7155/6/1/019001 CrossRefGoogle Scholar
  4. 4.
    Penza M, Rossi R, Alvisi M, Serra E (2010) Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology 21:105501.  https://doi.org/10.1088/0957-4484/21/10/105501 CrossRefPubMedGoogle Scholar
  5. 5.
    Hunter GW, Xu JC, Biaggi-Labiosa AM et al (2011) Smart sensor systems for human health breath monitoring applications. J Breath Res 5:37111.  https://doi.org/10.1088/1752-7155/5/3/037111 CrossRefGoogle Scholar
  6. 6.
    Hunter GW, Dweik RA (2008) Applied breath analysis: an overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications. J Breath Res 2:37020.  https://doi.org/10.1088/1752-7155/2/3/037020 CrossRefGoogle Scholar
  7. 7.
    Di Natale C, Paolesse R, Martinelli E, Capuano R (2014) Solid-state gas sensors for breath analysis: a review. Anal. Chim. Acta 824:1–17.  https://doi.org/10.1016/j.aca.2014.03.014 CrossRefPubMedGoogle Scholar
  8. 8.
    Amann A, Miekisch W, Schubert J et al (2014) Analysis of exhaled breath for disease detection. Annu Rev Anal Chem 7:455–482.  https://doi.org/10.1146/annurev-anchem-071213-020043 CrossRefGoogle Scholar
  9. 9.
    Grabowska-Polanowska B, Faber J, Skowron M et al (2013) Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A 1301:179–189.  https://doi.org/10.1016/j.chroma.2013.05.012 CrossRefPubMedGoogle Scholar
  10. 10.
    Hanouneh IA, Zein NN, Cikach F et al (2014) The breathprints in patients with liver disease identify novel breath biomarkers in alcoholic hepatitis. Clin Gastroenterol Hepatol 12:516–523.  https://doi.org/10.1016/j.cgh.2013.08.048 CrossRefPubMedGoogle Scholar
  11. 11.
    Blaikie TPJ, Edge JA, Hancock G et al (2014) Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes. J Breath Res 8:46010.  https://doi.org/10.1088/1752-7155/8/4/046010 CrossRefGoogle Scholar
  12. 12.
    Tanda N, Hinokio Y, Washio J et al (2014) Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph. J Breath Res 8:46008.  https://doi.org/10.1088/1752-7155/8/4/046008 CrossRefGoogle Scholar
  13. 13.
    Righettoni M, Schmid A, Amann A, Pratsinis SE (2013) Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J Breath Res 7:37110.  https://doi.org/10.1088/1752-7155/7/3/037110 CrossRefGoogle Scholar
  14. 14.
    Toyooka T, Hiyama S, Yamada Y (2013) A prototype portable breath acetone analyzer for monitoring fat loss. J Breath Res 7:36005.  https://doi.org/10.1088/1752-7155/7/3/036005 CrossRefGoogle Scholar
  15. 15.
    Righettoni M, Tricoli A (2011) Toward portable breath acetone analysis for diabetes detection. J Breath Res 5:37109.  https://doi.org/10.1088/1752-7155/5/3/037109 CrossRefGoogle Scholar
  16. 16.
    Fan G-T, Yang C-L, Lin C-H et al (2014) Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta 120:386–390.  https://doi.org/10.1016/j.talanta.2013.12.025 CrossRefPubMedGoogle Scholar
  17. 17.
    Deng C, Zhang J, Yu X et al (2004) Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B 810:269–275.  https://doi.org/10.1016/j.jchromb.2004.08.013 CrossRefGoogle Scholar
  18. 18.
    Schwarz K, Filipiak W, Amann A (2009) Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res 3:27002.  https://doi.org/10.1088/1752-7155/3/2/027002 CrossRefGoogle Scholar
  19. 19.
    Zhang H, Kulkarni A, Kim H et al (2011) Detection of acetone vapor using graphene on polymer optical fiber. J Nanosci. Nanotechnol 11:5939–5943CrossRefPubMedGoogle Scholar
  20. 20.
    Arias Espinoza JD, Sazhnikov V, Smits ECP et al (2014) Gas response behaviour and photochemistry of borondiketonate in acrylic polymer matrices for sensing applications. J Fluoresc 24:1735–1744.  https://doi.org/10.1007/s10895-014-1462-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Guseva GB, Ksenofontov AA, Antina EV (2017) The influence of structural factors on the composition, spectral-luminescent properties and thermal stability of zinc(II) bis(dipyrromethenate)s crystal solvates with amines. J Mol Struct 1130:385–394.  https://doi.org/10.1016/j.molstruc.2016.10.048 CrossRefGoogle Scholar
  22. 22.
    Guseva GB, Ksenofontov AA, Antina EV et al (2016) Thermal and spectroscopic characterization of zinc(II) bis(dipyrrinate)s crystal solvates with acetone, dimethyl sulfoxide, and triethylamine. J Therm Anal Calorim 126(3):481–1490.  https://doi.org/10.1007/s10973-016-5647-8 CrossRefGoogle Scholar
  23. 23.
    Guseva GB, Antinа EV, Ksenofontov AA et al (2014) Composition and thermal stability of bis(dipyrrolylmethenato)zinc(II) crystal solvates with N,N-dimethylformamide. Thermochimica Acta 589:31–36.  https://doi.org/10.1016/j.tca.2014.05.007 CrossRefGoogle Scholar
  24. 24.
    Guseva GB, Ksenofontov AA, Antina EV et al (2016) Crystal solvates of zinc(II) bis(dipyrrinates) with triethylamine: composition, stability and spectral-luminescent properties. J Coord Chem 69(5):1–14.  https://doi.org/10.1080/00958972.2016.1147562 CrossRefGoogle Scholar
  25. 25.
    Barannikov VP, Vyugin AI, Antina EV, Krestov GA (1990) Thermochemical characteristics of the near surroundings of tetraphenylporpffln in benzene, pyridine and carbon tetrachloride. Thermochim Acta 169:103–110.  https://doi.org/10.1016/0040-6031(90)80137-N CrossRefGoogle Scholar
  26. 26.
    Ksenofontov AA, Guseva GB, Antina EV et al (2017) Zinc(II) bis(dipyrromethenate)s crystal solvates with dimethyl sulfoxide composition, stability and spectral-luminescent properties. Sensors Actuators B Chem 251:858–868.  https://doi.org/10.1016/J.SNB.2017.05.143 CrossRefGoogle Scholar
  27. 27.
    Ksenofontov AA, Guseva GB, Antina EV, Vyugin AI (2016) Influence of structural factors and the properties of the medium on the fluorescence of Zn(II) bis(dipyrrinate)s. J Lumin 170:275–281.  https://doi.org/10.1016/j.jlumin.2015.10.064 CrossRefGoogle Scholar
  28. 28.
    Zakharova SP, Rumyantsev EV, Antina EV (2005) Coordination of alkyl-substituted biladiene-a,c by zinc(II), cadmium(II), and mercury(II) acetates in dimethylformamide. Russ J Coord Chem 31:849–855.  https://doi.org/10.1007/s11173-005-0180-5 CrossRefGoogle Scholar
  29. 29.
    Berezin MB, Antina EV, Dudina NA et al (2011) Synthesis, structure and fluorescence of a zinc(II) chelate complex with bis(2,4,7,8,9-pentamethyldipyrrolylmethen-3-yl)methane. Mendeleev Commun 21:168–170.  https://doi.org/10.1016/j.mencom.2011.04.020 CrossRefGoogle Scholar
  30. 30.
    Sheldrick WS, Engel J (1980) X-Ray crystal structure of the zinc complex of 1,2,3,7,8,12,13,17,18,19-decamethylbiladiene-a,c. J Chem Soc Chem Commun 5.  https://doi.org/10.1039/c39800000005
  31. 31.
    Smith JM, Van Ness HC, Abbott M, Swihart MT (2005) Introduction to chemical engineering thermodynamics, 7th edn. McGraw-Hill, BostonGoogle Scholar
  32. 32.
    Puri PS, Polak J, Ruether JA (1974) Vapor-liquid equilibriums of acetone-cyclohexane and acetone-isopropanol systems at 25.deg. J Chem Eng Data 19:87–89.  https://doi.org/10.1021/je60060a007 CrossRefGoogle Scholar
  33. 33.
    Dean JA (John A, Lange NA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-HillGoogle Scholar
  34. 34.
    Men’shikova AY, Moskalenko YE, Gribanov AV et al (2010) Sorption of vapors of aromatic compounds by cross-linked polymer particles containing luminophores: A spectroscopic study. Russ J Appl Chem 83:1997– Atmospheric 2005.  https://doi.org/10.1134/S1070427210110200 CrossRefGoogle Scholar
  35. 35.
    Khan MAH, Cooke MC, Utembe SR et al (2015) A study of global atmospheric budget and distribution of acetone using global atmospheric model stochem-cri. Atmos Environ J 112:269–277.  https://doi.org/10.1016/j.atmosenv.2015.04.056 CrossRefGoogle Scholar
  36. 36.
    Singh HB, O’Hara D, Herlth D et al (1994) Acetone in the atmosphere: distribution, sources, and sinks. J Geophys Res 99:1805.  https://doi.org/10.1029/93JD00764 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexander A. Ksenofontov
    • 1
    Email author
  • Galina B. Guseva
    • 1
  • Svetlana A. Stupikova
    • 1
    • 2
  • Elena V. Antina
    • 1
  1. 1.G.A. Krestov Institute of Solution Chemistry of the Russian Academy of SciencesIvanovoRussia
  2. 2.Ivanovo State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations