Skip to main content

Advertisement

Log in

Green and Cost Effective Synthesis of Fluorescent Carbon Quantum Dots for Dopamine Detection

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs) due to its high fluorescent output is evolving as novel sensing material and is considered as future building blocks for nano sensing devices. Hence, in this investigation we report microwave assisted preparation and multi sensing application of CQDs. The microwave derived CQDs are characterized by Dynamic Light Scattering (DLS) experiment and Fourier Infrared spectra (FTIR) to investigate the size distribution and chemical purity respectively. Fluorescent emission spectra recorded at varying pH shows varying fluorescence emission intensities. Further, emission spectra recorded at different temperatures shows that fluorescence emission of CQDs greatly depends on temperature. Therefore, we demonstrate the pH and temperature sensing characteristics of CQDs by fluorescence quenching behaviour. In addition, the interaction and sensing behaviour of CQDs for dopamine is also presented in this work with a detection limit of 0.2 mM. The steady state and time-resolved methods have been employed in fluorescence quenching methods for sensing dopamine through CQDs at room temperature. The bimolecular quenching rate constants for different concentration have been measured. The interaction between CQDs and dopamine indicates fluorescence quenching method is an elegant process for detecting dopamine through CQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang YY, He XW, Li WY (2015) Study on the room temperature synthesis of highly photoluminescent and temperature-sensitive CDs/PNIPAM hybrid hydrogels and their properties. RSC Adv 5:71030–71034

    Article  CAS  Google Scholar 

  2. Yang Y, Liu Y, Yang L, Liu J, Li K, Luo S (2015) A coumarin based colorimetric fluorescent probe for hydrogen sulphide. J Chem Sci 127:359–363

    Article  CAS  Google Scholar 

  3. Tayebi M, TavakkoliYaraki M, Mogharei A, Ahmadieh M, Tahriri M, Vashaee D, Tayebi L (2016) Thioglycolic acid-capped CdS quantum dots conjugated to α-Amylase as a fluorescence probe for determination of Starch at low concentration. J Fluoresc 26:1787–1794

    Article  PubMed  CAS  Google Scholar 

  4. Zhang C, Zhang S, Yan Y, Xia F, Huang A, Xian Y (2017) Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. Appl Mater Int 9:13415–13421

    Article  CAS  Google Scholar 

  5. Banerjee S, Dhir A, Banerjee T, Singh AK, Datta A (2011) Silicananodisks as platforms for fluorescence lifetime-based sensing of pH. J Chem Sci 123:901–907

    Article  CAS  Google Scholar 

  6. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  PubMed  CAS  Google Scholar 

  7. Roy P, Chen PC, Periasamy AP, Chen YN, Chang HT (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18:447–458

    Article  CAS  Google Scholar 

  8. Gonçalves H, Silva JCED. (2010) Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. J Fluoresc 20:1023–1028

    Article  PubMed  Google Scholar 

  9. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wu Z, Feng M, Chen X, Tang X (2016) N-dots as photoluminescent probe for rapid and selective detection of Hg2+ and Ag+ in aqueous solution. J Mater Chem B 4:2086–2089

    Article  CAS  Google Scholar 

  11. Gong NC, Li YL, Jiang X, Zheng XF, Wang YY, Huan SY (2016) Fluorescence resonance energy transfer-based biosensor composed of nitrogen-doped carbon dots and gold nanoparticles for the highly sensitive detection of organophosphorouspesticides. Anal Sci 32:951–956

    Article  PubMed  Google Scholar 

  12. Liu JX, Ding SN (2016) Monitoring pyrophosphate anions via cobalt(II)-modulated fluorescence of cadmium sulfide quantum dots. Anal Methods 8:2170–2175

    Article  CAS  Google Scholar 

  13. Oskoei YM, Fattahi H, Hassanzadeh J, Azar AM (2016) Selective determination of trinitrotoluene based on energy transfer between carbon dots and gold nanoparticles. Anal Sci 32:193–199

    Article  PubMed  CAS  Google Scholar 

  14. Zhu C, Zhai J, Dong S (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun 48:9367–9369

    Article  CAS  Google Scholar 

  15. Sheng M, Gao Y, Sun J, Gao F, Sheng ML, Gao Y, Sun JY, Gao F (2014) Carbon nanodots–chitosan composite film: a platform for protein immobilization, direct electrochemistry and bioelectrocatalysis. Biosens Bioelectron 58:351–358

    Article  PubMed  CAS  Google Scholar 

  16. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120

    Article  CAS  Google Scholar 

  17. Dong Y, Zhou N, Lin X, Lin J, Chi Y (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chen Chem Mater 22:5895–5899

    Article  CAS  Google Scholar 

  18. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33:3604–3613

    Article  PubMed  CAS  Google Scholar 

  19. Kwon W, Lee G, Do S, Joo T, Rhee SW (2014) Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 10:506–513

    Article  PubMed  CAS  Google Scholar 

  20. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957

    Article  CAS  Google Scholar 

  21. Zhang F, Lees E, Amin F, Gil PR, Yang F, Mulvaney P, Parak WJ (2011) Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7:3113–3127

    Article  PubMed  CAS  Google Scholar 

  22. Anjali Devi JS, Anulekshmi AH, Salini S, Aparna RS, Sony G (2017) Boronic acid functionalized nitrogen doped carbon dots for fluorescent turn-on detection of dopamine. Microchim Acta 184:4081–4090

    Article  CAS  Google Scholar 

  23. Bin Wang Y, Chen Y, Wu B, Weng YL, Li CM (2016) Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183:2491–2500

    Article  CAS  Google Scholar 

  24. Ulubay S, Dursun Z (2010) Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta 80:1461–1466

    Article  PubMed  CAS  Google Scholar 

  25. Tao Y, Lin Y, Ren J, Qu X (2013) A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens Bioelectr 42:41–46

    Article  CAS  Google Scholar 

  26. Qu K, Wang J, Ren J, Qu X (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem Euro J 19:7243–7249

    Article  CAS  Google Scholar 

  27. Bharathi D, Hari Krishna R, Singh V, Kottam N, Siddlingeshwar B (2017) One pot synthesis of C-dots and study on its interaction with nano ZnO through fluorescence quenching. J Lumin 190:328–334

    Article  CAS  Google Scholar 

  28. Zheng C, An X, Gong J (2015) Novel pH sensitive N-doped carbon dots with both long fluorescence lifetime and high quantum yield. RSC Adv 5:32319–32322

    Article  CAS  Google Scholar 

  29. Oomens J, Steill JD (2008) Free carboxylate stretching modes. J Phys Chem A 112:3281–3283

    Article  PubMed  CAS  Google Scholar 

  30. Choudhury SD, Chethodil JM, Gharat PM, Praseetha PK, Pal H (2017) pH elicited luminescence functionalities of carbon dots: mechanistic insights. J Phys Chem 8:1389–1395

    Google Scholar 

  31. Yu P, Wen X, Toh YR, Tang J (2012) Temperature-dependent fluorescence in carbon dots. J Phys Chem 116:25552–25557

    CAS  Google Scholar 

  32. Valerini D, Creti A, Lomascolo M, Manna L, Cingolani R, Anni M (2005) Temperature dependence of the photoluminescence properties of colloidal CdSe∕ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys Rev B 71:235409

    Article  CAS  Google Scholar 

  33. Wen X, Davis JA, Dao LV, Hannaford P, Coleman VA, Tan HH (2007) Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells. Appl Phys Lett 90:221914

    Article  CAS  Google Scholar 

  34. Wen X, Sitt A, Yu P, Toh YR, Tang J (2012) Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod nanocrystals. Phys Chem Chem Phys 14:3505–3512

    Article  PubMed  CAS  Google Scholar 

  35. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

  36. Birks JB (1970) Photophysics of aromatic molecules. Wiley–Interscience, New York

    Google Scholar 

  37. Siddlingeshwar B, Hanagodimath SM, Kirilova EM, Kirilov GK (2011) Photophysical characteristics of three novel benzanthrone derivatives: experimental and theoretical estimation of dipole moments. J Quan Spec Rad Tran 112:448–456

    Article  CAS  Google Scholar 

  38. Fanlin Zu F, Bai YZ, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Siddlingeshwar or R. Hari Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathi, D., Siddlingeshwar, B., Krishna, R.H. et al. Green and Cost Effective Synthesis of Fluorescent Carbon Quantum Dots for Dopamine Detection. J Fluoresc 28, 573–579 (2018). https://doi.org/10.1007/s10895-018-2218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2218-3

Keywords

Navigation