Skip to main content
Log in

Spectral Characteristics of Autofluorescence in Renal Tissue and Methods for Reducing Fluorescence Background in Confocal Laser Scanning Microscopy

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Significant autofluorescence (AF) of renal tissue is one of the major causes restricting the use of immunofluorescent staining. This study aimed at controlling renal tissue AF and testing an effective method for optimizing specific signals. In the present study, we observed emergence of strong AF in all renal cells under different fluorescent channels. Significant concentration-dependent reduction in AF of kidney tissue was observed with the use of sodium borohydride (NaBH4) and Sudan black B (SBB) alone (p < 0.05). Under maximum effective concentration, semi-quantitative analysis revealed that inhibitory effect of SBB on AF was superior to that of NaBH4 (P < 0.01). When the two chemicals were combined, we observed that background can be reduced, and specific staining can be optimized at optimum concentration. Intensity of renal tissue was examined by confocal λ scanning, which showed that peaks were located at the range of approximately 480 − 590 nm and similar to those of flavin and lipofuscin. These results indicated that combined use of NaBH4 and SBB, when targeted at different sources of AF in renal tissue, is the most effective means of reducing background and preserving specificity of fluorescent labels. In addition, this method does not interfere with various steps of immunofluorescence experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227

    Article  PubMed  CAS  Google Scholar 

  2. Salinas-Madrigal L, Sotelo-Avila C (1986) Morphologic diagnosis of acute tubular necrosis (ATN) by autofluorescence. Am J Kidney Dis 7(1):84–87

    Article  PubMed  CAS  Google Scholar 

  3. Tirapelli LF, Trazzi BFM, Bagnato VS, Tirapelli DPC, Kurachi C, da Costa MM, Tucci S Jr, Cologna AJ, Martins ACP (2009) Histopathology and laser autofluorescence of ischemic kidneys of rats. Lasers Med Sci 24(3):397–404

    Article  PubMed  Google Scholar 

  4. Fitzgerald JT, Michalopoulou A, Pivetti CD, Raman RN, Troppmann C, Demos SG (2005) Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging. J Biomed Opt 10(4):44018

    Article  PubMed  Google Scholar 

  5. Baschong W, Suetterlin R, Laeng RH (2001) Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem 49(12):1565–1572

    Article  PubMed  CAS  Google Scholar 

  6. Tan NC, Tran H, Roscioli E, Wormald PJ, Vreugde S (2012) Prevention of false positive binding during immunofluorescence of Staphylococcus aureus infected tissue biopsies. J Immunol Methods 384(1–2):111

    Article  PubMed  CAS  Google Scholar 

  7. Yang X, Vidunas AJ, Beniash E (2017) Optimizing immunostaining of enamel matrix: application of Sudan Black B and minimization of false positives from normal Sera and IgGs. Front Physiol 8

  8. Sun Y, Yu H, Zheng D, Cao Q, Wang Y, Harris D, Wang Y (2011) Sudan black B reduces autofluorescence in murine renal tissue. Arch Pathol Lab Med 135(10):1335–1342

    Article  PubMed  CAS  Google Scholar 

  9. Oliveira VC, Carrara RCV, Simoes DLC, Saggioro FP, Carlotti CG Jr, Covas DT, Neder L (2010) Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histol Histopathol 25(8):1017–1024

    PubMed  CAS  Google Scholar 

  10. Erben T, Ossig R, Naim HY, Schnekenburger J (2016) What to do with high autofluorescence background in pancreatic tissues - an efficient Sudan Black B quenching method for specific immunofluorescence labeling. Histopathology 69(3):406–422

    Article  PubMed  Google Scholar 

  11. Sabbatini M, Santillo M, Pisani A, Paternò R, Uccello F, Serù R, Matrone G, Spagnuolo G, Andreucci M, Serio V (2006) Inhibition of Ras/ERK1/2 signaling protects against postischemic renal injury. Am J Physiol Renal Physiol 290(6):F1408

    Article  PubMed  CAS  Google Scholar 

  12. Bagcik E, Ozkardesler S, Boztas N, Ugur EB, Akan M, Guneli M, Ozbilgin S (2014) Effects of dexmedetomidine in conjunction with remote ischemic preconditioning on renal ischemia-reperfusion injury in rats. Braz J Anesthesiol 64(6):382–390

    Article  Google Scholar 

  13. Norton AJ, Jordan S, Yeomans P (1994) Brief, high-temperature heat denaturation (pressure cooking): a simple and effective method of antigen retrieval for routinely processed tissues. J Pathol 173(4):371

    Article  PubMed  CAS  Google Scholar 

  14. Cowen T, Haven AJ, Burnstock G Cowen T, Haven AJ, Burnstock G (1985) Pontamine sky blue: a counterstain for background autofluorescence and immunofluorescence histochemistry. Histochemistry 82(3):205–208

    Article  PubMed  CAS  Google Scholar 

  15. Stoya G, Klemm A, Baumann E, Vogelsang H, Ott U, Linss W, Stein G (2002) Determination of autofluorescence of red blood cells (RbCs) in uremic patients as a marker of oxidative damage. Clin Nephrol 58(3):198–204

    Article  PubMed  CAS  Google Scholar 

  16. Bellini MH, Coutinho EL, Courrol LC, Rodrigues dOSF, Vieira Júnior ND, Schor N (2008) Correlation between autofluorescence intensity and tumor area in mice bearing renal cell carcinoma. J Fluoresc 18(6):1163–1168

  17. Patil CN, Wallace K, Lamarca BD, Moulana M, Lopez-Ruiz A, Soljancic A, Juncos LA, Grande JP, Reckelhoff JF (2016) Low dose testosterone protects against renal ischemia-reperfusion injury by increasing renal IL-10:TNF-α ratio and attenuating T cell infiltration. Am J Physiol Renal Physiol 311(2):F395–F403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Schuh CD, Haenni D, Craigie E, Ziegler U, Weber B, Devuyst O, Hall AM (2016) Long wavelength multiphoton excitation is advantageous for intravital kidney imaging. Kidney Int 89(3):712–719

    Article  PubMed  CAS  Google Scholar 

  19. Deyl Z, Macek K, Adam M, Vančíková (1980) Studies on the chemical nature of elastin fluorescence. BBA - Protein Struct 625(2):248–254

    Article  CAS  Google Scholar 

  20. Billinton N, Knight AW (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 291(2):175

    Article  PubMed  CAS  Google Scholar 

  21. Viegas MS, Martins TC, Seco F, Do CA (2007) An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur J Histochem 51(1):59

    PubMed  CAS  Google Scholar 

  22. Cawley EP, Hsu YT, Sturgill BC, Jr HL (1973) Lipofuscin (“wear and tear pigment”) in human sweat glands. J Invest Dermatol 61(2):105–107

    Article  PubMed  CAS  Google Scholar 

  23. Doyle KP, Simon RP, Snyder A, Stenzel-Poore MP (2003) Working with GFP in the brain. Biotechniques 34(3):492

    Article  PubMed  CAS  Google Scholar 

  24. Romijn HJ, Uum JFMV., Breedijk I, Emmering J, Radu I, Pool CW (1999) Double immunolabeling of neuropeptides in the human hypothalamus as analyzed by confocal laser scanning fluorescence microscopy. J Histochem Cytochem 47(2):229

    Article  PubMed  CAS  Google Scholar 

  25. Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47(6):719–730

    Article  PubMed  CAS  Google Scholar 

  26. Grimaud JA, Druguet M, Peyrol S, Chevalier O, Herbage D, El BN (1980) Collagen immunotyping in human liver: light and electron microscope study. J Histochem Cytochem 28(11):1145–1156

    Article  PubMed  CAS  Google Scholar 

  27. Kikugawa K, Beppu M, Kato T, Yamaki S, Kasai H (1994) Accumulation of autofluorescent yellow lipofuscin in rat tissues estimated by sodium dodecylsulfate extraction. Mech Ageing Dev 74(1–2):135–148

    Article  PubMed  CAS  Google Scholar 

  28. Ohsaki H, Haba R, Matsunaga T, Nakamura M, Kiyomoto H, Hirakawa E (2008) Cytomorphologic and immunocytochemical characteristics of reactive renal tubular cells in renal glomerular disease. Acta Cytol 52(3):297–303

    Article  PubMed  Google Scholar 

  29. Katz ML, Robison WG Jr, Herrmann RK, Groome AB, Bieri JG (1984) Lipofuscin accumulation resulting from senescence and vitamin E deficiency: spectral properties and tissue distribution. Mech Ageing Dev 25(1–2):149–159

    Article  PubMed  CAS  Google Scholar 

  30. Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8(1–2):197–204

    Article  PubMed  CAS  Google Scholar 

  31. Masters BR, Chance B (1999) Chapter twenty-eight – redox confocal imaging: intrinsic fluorescent probes of cellular metabolism. Fluorescent & Luminescent Probes for Biological Activity 361–374. https://doi.org/10.1016/B978-012447836-7/50030-0

  32. Fusi F, Agati G, Monici M, Pratesi R, Romano S, Bernabei PA (2002) Multicolor imaging autofluorescence microscopy: a new technique for the discrimination of normal and neoplastic tissues and cells. Recent Res Dev Photochem Photobiol 6:79–93

    Google Scholar 

  33. Clancy B, Cauller LJ (1998) Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J Neurosci Methods 83(2):97

    Article  PubMed  CAS  Google Scholar 

  34. Callis G (2010) Glutaraldehyde-induced autofluorescence. Biotechnic Histochem 85(4):269

    Article  Google Scholar 

  35. Neumann M, Gabel D (2002) Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem 50(3):437–439

    Article  PubMed  CAS  Google Scholar 

  36. Yang Y, Honaramooz A (2012) Characterization and quenching of autofluorescence in piglet testis tissue and cells. Anat Res Int 2012:820120

    PubMed  PubMed Central  Google Scholar 

  37. Härtig W, Reichenbach A, Voigt C, Boltze J, Bulavina L, Schuhmann MU, Seeger J, Schusser GF, Freytag C, Grosche J (2009) Triple fluorescence labelling of neuronal, glial and vascular markers revealing pathological alterations in various animal models. J Chem Neuroanat 37(2):128

    Article  PubMed  CAS  Google Scholar 

  38. Romijn HJ, van Uum JF, Breedijk I, Emmering J, Radu I, Pool CW (1999) Double immunolabeling of neuropeptides in the human hypothalamus as analyzed by confocal laser scanning fluorescence microscopy. J Histochem Cytochem 47(2):229–236

    Article  PubMed  CAS  Google Scholar 

  39. Lansink AG (1968) Thin layer chromatography and histochemistry of Sudan black B. Histochemie 16(1):68–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported by National Natural Science Foundation of China (No. 81560175 and No. 81260159), the High Level Talent Research Project of Shihezi University (grant no. RCSX201705), and Xinjiang Autonomous Region Graduate Research and Innovation Project (grant no. XJGRI2017033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Qiang Si or Li Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y., Cao, WW. et al. Spectral Characteristics of Autofluorescence in Renal Tissue and Methods for Reducing Fluorescence Background in Confocal Laser Scanning Microscopy. J Fluoresc 28, 561–572 (2018). https://doi.org/10.1007/s10895-018-2217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2217-4

Keywords

Navigation