Skip to main content
Log in

From Futile to Fruitful: Diesel Soot as White Light Emitter

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The present work describes a solution for the effective use of the hazardous particulate matter (diesel soot) from the internal combustion engines (ICEs) as a potential material emitting white light for white light emitting diodes (WLEDs). The washed soot samples are subjected to Field Emission Scanning Electron Microscopy (FESEM), High- Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive Spectroscopy (EDS), UV–Visible, Photoluminescent (PL) Spectroscopy and quantum yield measurements. The CIE plot and Correlated Color Temperature (CCT) reveals the white fluorescence on photoexcitation. The sample on ultraviolet (UV) laser excitation, provides a visual confirmation of white light emission from the sample. The diesel soot collected from public transport buses of different years of manufacture invariably exhibit white fluorescence at an excitation of 350 nm. The sample show a quantum yield of 47.09%. The study is significant in the context of pollution and search for low-cost, rare-earth phosphor free material for white light emission and thereby turning the hazardous, futile material into a fruitful material that can be used for potential applications in photonics and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schubert EF, Kim JK (2005) Solid-state light sources getting smart. Science 308(5726):1274–1278

    Article  PubMed  CAS  Google Scholar 

  2. Feng XT, Zhang F, Wang YL, Zhang Y, Yang YZ, Liu XG (2015) Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes. Appl Phys Lett 107:213102

    Article  CAS  Google Scholar 

  3. Farinola GM, Ragni R (2011) Electroluminescent materials for white organic light emitting diodes. Chem Soc Rev 40:3467–3482

    Article  PubMed  CAS  Google Scholar 

  4. Kamtekar KT, Monkman AP, Bryce MR (2010) Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv Mater 22: 572 – 82

  5. Sun C-Y, Wang X-L, Zhang X et al (2013) Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat Commun 4:2717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Motokazu Y, Yukio N, Takashi M (2002) Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well. Jpn J Appl Phys 41: L 246–L 248

  7. Chen L-Y, Cheng W-C, Tsai C-C, Huang Y-C, Lin Y-S, Cheng W-H (2014) High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+:YAG inter-diffusion. Opt Mater Express 4(1):121–128

    Article  CAS  Google Scholar 

  8. Chen B, Zhou Q, Li J et al (2013) Red emissive CuInS2-based nanocrystals: a potential phosphor for warm white light-emitting diodes. Opt Express 2(8):10105–10110

    Article  CAS  Google Scholar 

  9. Yang Q, Wu K, Jiang J et al (2014) Pure white-light and yellow-to-blue emission tuning in single crystals of dy (III) metal–organic frameworks. Chem Commun 50:7702–7704

    Article  CAS  Google Scholar 

  10. Sessolo MI, Tordera D, Bolink HJ (2011) Ionic iridium complex and conjugated polymer used to solution-. a bilayer white light-emitting diode. ACS Appl Mater Interfaces 12011:329–332

    Google Scholar 

  11. Ramya AR, Varughese S, Reddy MLP (2014) Tunable white-light emission from mixed lanthanide (Eu3+, Gd3+, Tb3+) coordination polymers derived from 4-(dipyridin-2-yl)aminobenzoate. Dalton Trans 43:10940–10946

    Article  PubMed  CAS  Google Scholar 

  12. Ledemi Y, Trudel AA, Rivera VAG et al (2014) White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics. J Mater Chem C 2(25):5046–5056

    Article  CAS  Google Scholar 

  13. Zhang Y, Xie C, Su H et al (2011) Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett 11:329–332

    Article  PubMed  CAS  Google Scholar 

  14. Babu SS, Aimi J, Ozawa H et al (2012) Solvent-free luminescent organic liquids. Angew Chem Int Ed Engl 51(14):3391–3395

    Article  CAS  Google Scholar 

  15. Swapna MS, Sankararaman S (2017) Investigation of graphene oxide in diesel soot. J Mater Sci Nanotechnol 5(1): 103.1-103.6

  16. Swapna MS, Sankararaman S (2017) Fractal analysis – a surrogate technique for material characterization. Nanosystems: Phys Chem Math 8(6):809–815

    Google Scholar 

  17. Swapna MS, Pooja VM, Anamika SA, Soumya S, Sankararaman S (2017) Synthesis and characterization of carbon nano Kajal. JOJ Mater Sci 1(4):555566.001–003

  18. Uchida T, Ohashi O (2006) Synthesis of single-wall Carbon nanotubes from diesel soot. Jpn J Appl Phys 45:8027–8029

    Article  CAS  Google Scholar 

  19. Swapna MS, Sankararaman S (2017) Carbon nanonecklaces with carbon nanotubes and carbon dots. Int J Mater Sci 12(3):541–548

    Google Scholar 

  20. Stanmore BR, Brilhac JF, Gilot P (2001) The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39:2247–2268

    Article  CAS  Google Scholar 

  21. Swapna MS, Beryl C, Reshma SS et al. (2017) Ultraviolet protection action of carbon nanoparticles in leaves, BioNanoSci. 7: pp 583–587

    Article  Google Scholar 

  22. Operation manual. http://www.HORIBA.com/scientific

  23. Hussain S, Jha P, Chouksey A et al. (2011) Spectroscopic investigation of modified single wall carbon nanotube (SWCNT). J Mod Phys 2: 538 – 543

    Article  CAS  Google Scholar 

  24. Li HT, Kang ZH, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253

    Article  CAS  Google Scholar 

  25. Wen Z-H, Yin X-B (2016) Excitation-independent carbon dots, from photoluminescence mechanism to single-color application. RSC Advs 6:27829–27835

    Article  CAS  Google Scholar 

  26. Mc Camy, CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17(2):142–144

    Article  Google Scholar 

Download references

Funding

This study was not funded by any agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Sankararaman, S. From Futile to Fruitful: Diesel Soot as White Light Emitter. J Fluoresc 28, 543–549 (2018). https://doi.org/10.1007/s10895-018-2215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2215-6

Keywords

Navigation