Liposomal Form of Tetra(Aryl)Tetracyanoporphyrazine: Physical Properties and Photodynamic Activity In Vitro

  • Andrey V. Yudintsev
  • Natalia Yu. Shilyagina
  • Darya V. Dyakova
  • Svetlana A. Lermontova
  • Larisa G. Klapshina
  • Evgeniy L. Guryev
  • Irina V. Balalaeva
  • Vladimir A. Vodeneev
ORIGINAL ARTICLE
  • 54 Downloads

Abstract

Tetra(aryl)tetracyanoporphyrazines are the promising group of dyes for photodynamic therapy of tumors with unique combination of photosensitizer properties and sensitivity of fluorescence parameters to the environment viscosity. However, in vivo application of such hydrophobic photosensitizers requires using of drug carriers ensuring efficient delivery to the tumor site. The present study is focused on obtaining liposomes loaded with tetrakis(4-benzyloxyphenyl)tetracyanoporphyrazine and examining their properties depending on lipid composition. An efficient loading of the dye and a high long-term stability were proved for the liposomes composed of phosphatidylcholine with cholesterol and phosphatidylglycerol. This can be explained by the presence of negatively charged lipids in the bilayer and, as a consequence, a high value of the surface potential. A high rate of cellular uptake and a strong photoinduced toxicity give the prerequisites for the further use of the liposomal form of the photosensitizer for photodynamic therapy of tumors.

Keywords

Porphyrazine Liposomes Photodynamic therapy Photosensitizer Fluorescent molecular rotor 

Notes

Acknowledgements

The work was financially supported by Ministry of Education and Science of the Russian Federation: A.V. Yudintsev and E.L. Guryev are thankful for personal research activity support (grants no. 6.7083.2017/9.10 and no. 20.6515.2017/9.10); N.Yu. Shilyagina is thankful for supporting cellular studies of porphyrazine (contract МК-980.2017.4); I.V. Balalaeva is thankful for supporting chemical synthesis work (government assignment number 6.3099.2017).

Compliance of Ethical Standards

Declaration of Interest

The authors report no conflict of interest.

References

  1. 1.
    Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–881CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers.  https://doi.org/10.3390/cancers9020019 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Hamblin MR, Mroz P (2008) History of PDT: The first hundred years. In: Hamblin MR, Mroz P (eds) Advances in photodynamic therapy: basic, translational and clinical. Artech House, MA, pp 1–12Google Scholar
  4. 4.
    Abrahamse H, Hamblin MR (2016) New photosensitizes for photodynamic therapy. Biochem J 473:347–364CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Klapshina LG, Douglas WE, Grigoryev IS, Ladilina EY, Shirmanova MV, Mysyagin SA, Balalaeva IV, Zagaynova EV (2010) Novel PEG-organized biocompatible fluorescent nanoparticles doped with an ytterbium cyanoporphyrazine complex for biophotonic applications. Chem Commun 46:8398–8400CrossRefGoogle Scholar
  6. 6.
    Lermontova SA, Grigorev IS, Shilyagina NY, Peskova NN, Balalaeva IV, Shirmanova MV, Klapshina LG (2016) Novel porphyrazine macrocycles exhibiting strong sensitivity of fluorescence parameters to viscosity. Russ J Gen Chem 86:1000–1010CrossRefGoogle Scholar
  7. 7.
    Kuimova MK, Botchway SW, Parker AW, Balaz M, Collins HA, Anderson HL, Suhling K, Ogilby PR (2009) Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem 1:69–73CrossRefPubMedGoogle Scholar
  8. 8.
    Izquierdo MA, Vyšniauskas A, Lermontova SA, Grigoryev IS, Shilyagina NY, Balalaeva IV, Klapshina LG, Kuimova MK (2015) Dual use of porphyrazines as sensitizers and viscosity markers in photodynamic therapy. J Mater Chem B 3:1089–1096CrossRefGoogle Scholar
  9. 9.
    Obaid G, Broekgaarden M, Bulin AL, Huang HC, Kuriakose J, Liu J, Tayyaba H (2016) Photonanomedicine: a convergence of photodynamic therapy and nanotechnology. Nanoscale 8:12471–12503CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Debele TA, Peng S, Tsai HC (2015) Drug carrier for photodynamic cancer therapy. Int J Mol Sci 16:22094–22136CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Calixto GM, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21:342CrossRefPubMedGoogle Scholar
  12. 12.
    Shilyagina NY, Peskova NN, Lermontova SA, Brilkina AA, Vodeneev VA, Yakimansky AV, Klapshina LG, Balalaeva IV (2017) Effective delivery of porphyrazine photosensitizers to cancer cells by polymer brush nanocontainers. J Biophotonics 10:1189–1197CrossRefPubMedGoogle Scholar
  13. 13.
    Skupin-Mrugalska P, Piskorz J, Goslinski T, Mielcarek J, Konopka K, Düzgüneş N (2013) Current status of liposomal porphyrinoid photosensitizers. Drug Discov Today 18:776 – 84CrossRefPubMedGoogle Scholar
  14. 14.
    Richter AM, Waterfield E, Jain AK, Canaan AJ, Allison BA, Levy JG (1993) Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol 57:1000–1006CrossRefPubMedGoogle Scholar
  15. 15.
    Kuntsche J, Freisleben I, Steiniger F, Fahr A (2010) Temoporfin-loaded liposomes: physicochemical characterization. Eur J Pharm Sci 40:305–315CrossRefPubMedGoogle Scholar
  16. 16.
    Compagnin C, Moret F, Celotti L, Miotto G, Woodhams JH, MacRobert AJ, Scheglmann D, Iratni S, Reddi E (2011) Meta-tetra(hydroxyphenyl)chlorin-loaded liposomes sterically stabilised with poly(ethylene glycol) of different length and density: characterisation, in vitro cellular uptake and phototoxicity. Photochem Photobiol Sci 10:1751–1759CrossRefPubMedGoogle Scholar
  17. 17.
    Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N (2016) Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 45:6520–6545CrossRefPubMedGoogle Scholar
  18. 18.
    Klapshina LG, Grigoryev IS, Douglas WE, Trifonov AA, Gudilenkov ID, Semenov VV, Bushuk BA, Bushuk SB (2007) Metal template assembly of highly functionalized octacyanoporphyrazine framework from TCNE structural units. Chem Commun 19:1942–1944CrossRefGoogle Scholar
  19. 19.
    Lermontova SA, Grigor’ev IS, Peskova NN, Ladilina EY, Balalaeva IV, Klapshina LG, Boyarskii VP (2017) New promising porphyrazine-based agents for optical theranostics of cancer. Russ J Gen Chem 87:479–484CrossRefGoogle Scholar
  20. 20.
    Santos NC, Prieto M, Castanho MA (2003) Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochem Biophys Acta 1612:123–135CrossRefPubMedGoogle Scholar
  21. 21.
    Gorbenko GP (1998) Bromothymol blue as a probe for structural changes of model membranes induced by hemoglobin. Biochem Biophys Acta 1370:107–118CrossRefPubMedGoogle Scholar
  22. 22.
    Shilyagina NY, Plekhanov VI, Shkunov IV, Shilyagin PA, Dubasova LV, Brilkina AA, Sokolova EA, Turchin IV, Balalaeva IV (2014) LED light source for in vitro study of photosensitizing agents for photodynamic therapy. Modern Technologies in Medicine 6:15–22Google Scholar
  23. 23.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  24. 24.
    Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  25. 25.
    Yakimansky AV, Meleshko TK, Ilgach DM, Bauman MA, Anan’eva TD, Klapshina LG, Lermontova SA, Balalaeva IV, Douglas WE (2013) Novel regular polyimide-graft-poly(methacrylic acid) brushes: synthesis and possible applications as nanocontainers of cyanoporphyrazine agents for photodynamic therapy. J Polym Sci A Polym Chem 51:4267–4281CrossRefGoogle Scholar
  26. 26.
    Ioffe VM, Gorbenko GP, Domanov YA, Tatarets AL, Patsenker LD, Terpetsching EA, Dyubko TS (2006) A new fluorescent squaraine probe for the measurement of membrane polarity. J Fluoresc 16:47–52CrossRefPubMedGoogle Scholar
  27. 27.
    Reshetov V, Lassalle HP, François A, Dumas D, Hupont S, Gräfe S, Filipe V, Jiskoot W, Guillemin F, Zorin V, Bezdetnaya L (2013) Photodynamic therapy with conventional and PEGylated liposomal formulations of mTHPC (temoporphin): compatison pf threatment efficacy and distribution characteristics in vivo. Int J Nanomed 8:3817–3831CrossRefGoogle Scholar
  28. 28.
    Advances in planar lipid bilayers and liposomes (2011). Leitmannova А, Iglic LA (eds) 1-st Edn, 4:p 336Google Scholar
  29. 29.
    Starke-Peterkovic T, Turner N, Vitha MF, Waller MP, Hibbs DE, Clarke RJ (2006) Cholesterol effect on the dipole potential of lipid membranes. Biophys J 90:4060–4070CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dzieciuch M, Rissanen S, Szydłowska N, Bunker A, Kumorek M, Jamróz D, Vattulainen I, Nowakowska M, Róg T, Kepczynski M (2015) PEGylated liposomes as carriers of hydrophobic porphyrins. J Phys Chem B 119:6646–6657CrossRefPubMedGoogle Scholar
  31. 31.
    Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 1:279–293CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Girotti AW (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B 63:103 – 13CrossRefPubMedGoogle Scholar
  33. 33.
    Henderson BW, Dougherty TJ (eds) (1992) Basic Principles and Clinical Applications. Marcel Dekker Inc., New York Photodynamic TherapyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andrey V. Yudintsev
    • 1
  • Natalia Yu. Shilyagina
    • 1
  • Darya V. Dyakova
    • 1
  • Svetlana A. Lermontova
    • 1
    • 2
  • Larisa G. Klapshina
    • 1
    • 2
  • Evgeniy L. Guryev
    • 1
  • Irina V. Balalaeva
    • 1
    • 3
  • Vladimir A. Vodeneev
    • 1
  1. 1.Lobachevsky UniversityNizhny NovgorodRussia
  2. 2.G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of SciencesNizhny NovgorodRussia
  3. 3.Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations