Skip to main content
Log in

A Fluorescent Sensor of 3-Aminobenzeneboronic Acid Functionalized Hydrothermal Carbon Spheres for Facility Detection of L-tryptophan

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the paper, hydrothermal carbon spheres (HTCs) are functionalized by the 3-aminobenzeneboronic acid (3-APBA) as a fluorescence sensor. The modification carbon spheres (3-APBA-HTCs) have shown excellent selectivity and sensitivity for efficient determination of L-tryptophan (L-Trp). The fluorescence sensor can selectively achieve the “On–Off” switchable functionality for L-Trp at an extremely low detection limit of 0.50 × 10− 5 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Zhou Y, Dong H, Liu L, Hao Y, Chang Z, Xu M (2015) Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosens Bioelectron 64:442–448

    Article  CAS  PubMed  Google Scholar 

  2. Li W, Zhang Y, Gan X, Yang M, Mie B, Fang M, Zhang Q, Yu J, Wu J, Tian Y, Zhou H (2015) A triphenylamine-isophorone-based “off–on” fluorescent and colorimetric probe for Cu2+. Sensor Actuat B: Chem 206:640–646

    Article  CAS  Google Scholar 

  3. Zhou Y, Yoon J (2012) Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev 41:52–67

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Han Q, Zhang Y, Wu J, Tang X, Dong C, Liu W (2015) Determination of free tryptophan in serum with aptamer—Comparison of two aptasensors. Talanta 131:672–677

    Article  CAS  PubMed  Google Scholar 

  5. Sala A, Nicolis S, Roncone R, Casella L, Monzani E (2004) Peroxidase catalyzed nitration of tryptophan derivatives: Mechanism, products and comparison with chemical nitrating agents. Eur J Biochem 271:2841–2852

    Article  CAS  PubMed  Google Scholar 

  6. Wen J, Geng Z, Yin Y, Zhang Z, Wang Z (2011) A Zn2+-specific turn-on fluorescent probe for ratiometric sensing of pyrophosphate in bothwater and blood serum. Dalton Trans 40:1984–1989

    Article  CAS  PubMed  Google Scholar 

  7. Othman AM, Li S, Leblanc RM (2013) Enhancing selectivity in spectrofluorimetric determination of tryptophan by using graphene oxide nanosheets. Anal Chim Acta 787:226–232

    Article  CAS  PubMed  Google Scholar 

  8. Shiang Y-C, Huang C-C, Chen W-Y, Chen P-C, Chang H-T (2012) Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J Mater Chem 22:12972–12982

    Article  CAS  Google Scholar 

  9. He C, Wang J, Wu P, Jia L, Bai Y, Zhang Z, Duan C (2012) Fluorescent differentiation and quantificational detection of free tryptophan in serum within a confined metal–organic tetrahedron. Chem Commun 48:11880–11882

    Article  CAS  Google Scholar 

  10. Crouse HF, Potoma J, Nejrabi F, Snyder DL, Chohan BS, Basu S (2012) Quenching of tryptophan fluorescence in various proteins by a series of small nickel complexes. Dalton Trans 41:2720–2731

  11. Li M, Wu X, Wang Y, Li Y, Zhu W, James TD (2014) A near-infrared colorimetric fluorescent chemodosimeter for the detection of glutathione in living cells. Chem Commun 50:1751–1753

    Article  CAS  Google Scholar 

  12. Tian Y, Wang F, Liu Y, Pang F, Zhang X (2014) Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta 146:646–653

    Article  CAS  Google Scholar 

  13. Xu J, Li Q, Yue Y, Guo Y, Shao S (2014) A water-soluble BODIPY derivative as a highly selective “Turn-On” fluorescent sensor for H2O2 sensing in vivo. Biosens Bioelectron 56:58–63

    Article  CAS  PubMed  Google Scholar 

  14. Othman AM, Li S, Leblanc RM (2013) Enhancing selectivity in spectrofluorimetric determination of tryptophan by using graphene oxide nanosheets. Anal Chem 787:226–232

    CAS  Google Scholar 

  15. Du F, Min Y, Zeng F, Yu C, Wu S (2014) A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. Small 10:964–972

    Article  CAS  PubMed  Google Scholar 

  16. Weinstain R, Savariar EN, Felsen CN, Tsien RY (2014) In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. J Am Chem Soc 136:874–877

    Article  CAS  PubMed  Google Scholar 

  17. Hsu P-C, Chang H-T (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48:3984–3986

    Article  CAS  Google Scholar 

  18. Wang L, Zhu S-J, Wang H-Y, Qu S-N, Zhang Y-L, Zhang J-H, Chen Q-D, Xu H-L, Han W, Yang B, Sun H-B (2014) Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8:2541–2547

    Article  CAS  PubMed  Google Scholar 

  19. Qu Z, Zhou X, Gu L, Lan R, Sun D, Yu D, Shi G (2013) Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem Commun 49:9830–9832

  20. Ren X, Wei J, Ren J, Qiang L, Tang F, Meng X, A sensitive biosensor for the fluorescence detection of the acetylcholinesterase reaction system based on carbon dots, Colloids Surf. B, Biointerfaces 125(2015)pp 90–95

  21. Chung HJ, Kim HK, Yoon JJ, Park TG (2006) Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm Res 23:1835–1841

    Article  CAS  PubMed  Google Scholar 

  22. Cooper CR, James TD (2000) Synthesis and evaluation of D-glucosamine-selective fluorescent sensors. J Chem Soc Perkin Trans 1:963–969

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province (201602347, GY2016-B-003), Liaoning Provincial Department of Education Innovation Team Projects (LT2015012) and Shenyang Science and Technology Plan Project (F17-231-1-05). College Students Innovation and entrepreneurship training program of Liaoning University (x201710140196). The authors also thank our colleagues and other students for their participating in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Hua Ge or Xiang-Dong Zhang.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 354 KB)

Appendix A. Supplementary data

Appendix A. Supplementary data

The infrared spectra of the HTCs and 3-APBA-HTCs, the UV spectra of the 3-APBA-HTCs, the thermogravimetric (TG) analysis curves of HTCs and 3-APBA-HTCs and fluorescence spectra upon the addition of 2.085 mM of different amino acids to the same amount of 3-APBA-HTCs are available in Supporting Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, LX., Zhang, YD. et al. A Fluorescent Sensor of 3-Aminobenzeneboronic Acid Functionalized Hydrothermal Carbon Spheres for Facility Detection of L-tryptophan. J Fluoresc 28, 439–444 (2018). https://doi.org/10.1007/s10895-017-2205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2205-0

Keywords

Navigation