Skip to main content
Log in

Synthesis and Photochemical Properties of 2,3;5,6-bis(cyclohexano)-BODIPY

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The boron-dipyrromethene (BODIPY) dye containing an annelated cyclohexyl rings at the 2,3 and 5,6-positions of pyrroles has been synthesized and characterized. Photochemical properties of the obtained compound have been investigated in different individual solvents. 2,3;5,6-Bis(cyclohexano)-BODIPY exhibits intense chromophore properties with maximum of S oS 1 band in the 543–549 nm (A from 66000 to 96000 L/mol·cm). The complex is a fluorophore with a quantum yield up to ~ 100%. The influence of solvent polarity on the spectral properties was evaluated. To better understand the spectroscopic results, quantum chemical calculations were carried out. Photostability of dye was studied.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Banuelos J (2016) BODIPY dye, the most versatile fluorophore ever? Chem Rec 16:335–348. https://doi.org/10.1002/tcr.201500238

    Article  CAS  PubMed  Google Scholar 

  2. Treibs A, Kreuzer FH (1968) Difluorboryl-Komplexe von Di- und tripyrrylmethenen. Eur J Org Chem 718:208–223. https://doi.org/10.1002/jlac.19687180119

    CAS  Google Scholar 

  3. Shah M, Thangaraj K, Soong ML, Wolford L, Boyer JH, Politzer I, Pavlopoulos TG (1990) Pyrromethene–BF2 complexes as laser dyes:1. Heteroat Chem 1: 389–399. https://doi.org/10.1002/hc.520010507

    Article  CAS  Google Scholar 

  4. Guggenheimer SC, Boyer JH, Thangaraj K, Shah M, Soong ML, Pavlopoulos TG (1993) Efficient laser action from two cw laser-pumped pyrromethene-BF2 complexes. Appl Opt 32:3942–3943. https://doi.org/10.1364/AO.32.003942

    Article  CAS  PubMed  Google Scholar 

  5. Boyer JH, Haag AM, Sathyomoorthi G, Soong ML, Thangaraj K (1993) Pyrromethene–BF2 complexes as laser dyes: 2. Heteroat Chem 4:39–43. https://doi.org/10.1002/hc.520040107

    Article  CAS  Google Scholar 

  6. Yariv E, Schultheiss S, Saraidarov T, Reisfeld R (2001) Efficiency and photostability of dye-doped solid-state lasers in different hosts. Opt Mater 16:29–38. https://doi.org/10.1016/S0925-3467(00)00056-2

    Article  CAS  Google Scholar 

  7. Lai RY, Bard AJ (2003) Electrogenerated Chemiluminescence 71. Photophysical, electrochemical, and electrogenerated chemiluminescent properties of selected dipyrromethene – BF2 dyes. J Phys Chem B 107:5036–5042. https://doi.org/10.1021/jp034578h

    Article  CAS  Google Scholar 

  8. Lopez Arbeloa F, Banuelos J, Martınez V, Arbeloa T, Lopez Arbeloa I (2005) Structural, photophysical and lasing properties of pyrromethene dyes. Int Rev Phys Chem 24:339–374. https://doi.org/10.1080/01442350500270551

    Article  CAS  Google Scholar 

  9. Qin W, Baruah M, Auweraer M, Schryver F, Boens N (2005) Photophysical properties of borondipyrromethene analogues in solution. J Phys Chem A 109:7371–7384. https://doi.org/10.1021/jp052626n

    Article  CAS  PubMed  Google Scholar 

  10. Garcia O, Sastre R, del Agua D, Costela A, Garcia-Moreno I, Lopez Arbeloa F, Banuelos Prieto J, Lopez Arbeloa I (2007) Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials. J Phys Chem C 111:1508–1516. https://doi.org/10.1021/jp065080t

    Article  CAS  Google Scholar 

  11. Susdorf T, del Agua D, Tyagi A, Penzkofer A, Ggarcia O, Sastre R, Costela A, Garcia-Moreno I (2007) Photophysical characterization of pyrromethene 597 laser dye in silicon-containing organic matrices. Appl Phys B 86:537–545. https://doi.org/10.1007/s00340-006-2439-z

    Article  CAS  Google Scholar 

  12. Thorat KG, Kamble P, Mallah R, Ray AK, Sekar N,, and Theory TD-DFT. (2015) Congeners of Pyrromethene-567 dye: perspectives from synthesis, photophysics, photostability, laser. J Org Chem 80:6152–6164. https://doi.org/10.1021/acs.joc.5b00654

    Article  CAS  PubMed  Google Scholar 

  13. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. https://doi.org/10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  14. Ziessel R, Ulrich G, Harriman A (2007) The chemistry of BODIPY: a new El Dorado for fluorescence tools. New J Chem 31:496–501. https://doi.org/10.1039/B617972J

    Article  CAS  Google Scholar 

  15. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201. https://doi.org/10.1002/anie.200702070

    Article  CAS  Google Scholar 

  16. Benstead M, Mehl GH, Boyle RW (2011) 4, 4′-Difluoro-4-bora-3a, 4a-diaza-s-indacenes (BODIPYs) as components of novel light active materials. Tetrahedron 67:3573–3601. https://doi.org/10.1016/j.tet.2011.03.028

    Article  CAS  Google Scholar 

  17. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172. https://doi.org/10.1039/C1CS15132K

    Article  CAS  PubMed  Google Scholar 

  18. Zhu S, Zhang J, Janjanam J, Vegesna G, Luo F-T, Tiwari A, Liu H (2013) Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc(II). J Mater Chem B 1:1722–1728. https://doi.org/10.1039/C3TB00249G

    Article  CAS  Google Scholar 

  19. Zhao C, Zhang Y, Feng P, Cao J (2012) Development of a borondipyrromethene-based Zn2+ fluorescent probe: solvent effects on modulation sensing ability. Dalton Trans 41:831–838. https://doi.org/10.1039/C1DT10797F

    Article  CAS  PubMed  Google Scholar 

  20. Peters C, Billich A, Ghobrial M, Hogenauer K, Ullrich T, Nussbaumer P (2007) Synthesis of Borondipyrromethene (BODIPY)-labeled sphingosine derivatives by cross-metathesis reaction. J Org Chem 72:1842–1845. https://doi.org/10.1021/jo062347b

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, Fan J, Gao X, Wang B, Sun S, Peng X (2009) Carboxyl BODIPY dyes from bicarboxylic anhydrides: one-pot preparation, spectral properties, photostability, and biolabeling. J Org Chem 74:7675–7683. https://doi.org/10.1021/jo901149y

    Article  CAS  PubMed  Google Scholar 

  22. Bergstrom F, Mikhalyov I, Hagglof P, Wortmann R, Ny T, Johansson LB-Å (2002) Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology. J Am Chem Soc 124:196–204. https://doi.org/10.1021/ja010983f

    Article  PubMed  Google Scholar 

  23. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77–88. https://doi.org/10.1039/C2CS35216H

    Article  CAS  PubMed  Google Scholar 

  24. Awuah SG, You Y (2012) Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Advances 2:11169–11183. https://doi.org/10.1039/C2RA21404K

    Article  CAS  Google Scholar 

  25. Wan CW, Burghart A, Chen J, Bergstr€om F, Johansson LBA, Wolford MF, Kim TG, Topp MR, Hochtrasser RM, Burgess K (2003) Anthracene–BODIPY cassettes: syntheses and energy transfer. Chem Eur J 9: 4430–4441. https://doi.org/10.1002/chem.200304754

    Article  CAS  PubMed  Google Scholar 

  26. D’Souza F, Smith PM, Zandler ME, McCarty AL, Itou M, Araki Y, Ito O (2004) Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex. J Am Chem Soc 126:7898–7907. https://doi.org/10.1021/ja030647u

    Article  PubMed  Google Scholar 

  27. Ooyama Y, Hagiwara Y, Mizumo T, Harima Y, Ohshita J (2013) Photovoltaic performance of dye-sensitized solar cells based on D–π–A type BODIPY dye with two pyridyl groups. New J Chem 37:2479–2485. https://doi.org/10.1039/C3NJ00456B

    Article  CAS  Google Scholar 

  28. Ooyama Y, Hagiwara Y, Mizumo T, Harima Y, Ohshita J (2013) Synthesis of diphenylamino-carbazole substituted BODIPY dyes and their photovoltaic performance in dye-sensitized solar cells. RSC Adv 3:18099–18106. https://doi.org/10.1039/C3RA43577F

    Article  CAS  Google Scholar 

  29. Rezende L, Vaidergorn M, Moraes J, Emery F, Synthesis (2014) Photophysical properties and solvatochromism of meso-substituted tetramethyl BODIPY dyes. J Fluoresc 24:257–266. https://doi.org/10.1007/s10895-013-1293-8

    Article  Google Scholar 

  30. Filatov MA, Lebedev AY, Mukhin SN, Vinogradov SA, Cheprakov AV (2010) π-extended dipyrrins capable of highly fluorogenic complexation with metal ions. J Am Chem Soc 132:9552–9554. https://doi.org/10.1021/ja102852v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gresser R, Hoyer A, Hummert M, Hartmann H, Leo K, Riede M (2011) Homoleptic Co(II), Ni(II), Cu(II), Zn(II) and Hg(II) complexes of bis-(phenyl)-diisoindol-aza-methene. Dalton Trans 40:3476–3483. https://doi.org/10.1039/C0DT01655A

    Article  CAS  PubMed  Google Scholar 

  32. Melanson JA, Smithen DA, Cameron TS, Thompson A (2014) Microwave-assisted reduction of F-BODIPYs and dipyrrins to generate dipyrromethanes. Can J Chem 92:688–694. https://doi.org/10.1139/cjc-2013-0341

    Article  CAS  Google Scholar 

  33. Leen V, Braeken E, Luckermans K, Jackers C, Van der Auweraer M, Boens N, Dehaen W (2009) A versatile, modular synthesis of monofunctionalized BODIPY dyes. Chem Commun 4515–4517. https://doi.org/10.1039/B906164A

  34. Wu L, Burgess K (2008) A new synthesis of symmetric boraindacene (BODIPY) dyes. Chem Commun 4933–4935. https://doi.org/10.1039/B810503K

  35. Alekseeva AS, Tretiakova DS, Melnikova DN, Molotkovsky UlG, Boldyrev IA (2016) Novel fluorescent membrane probe 2,3;5,6-Bis(Cyclohexyl)-BODIPY-labeled phosphatidylcholine. Russ J Bioorg Chem 42:305–309. https://doi.org/10.1134/S1068162016030031

  36. Gordon, Ford R (1976) Sputnik Chimica, Mir, Moscow

  37. Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents: physical properties and methods of purification

  38. Khodov IA, Nikiforov MY, Alper GA, Mamardashvili GM, Mamardashvili NZ, Koifman OI (2015) Synthesis and spectroscopic characterization of Ru(II) and Sn(IV)-porphyrins supramolecular complexes. J Mol Struct 1081:426–430. https://doi.org/10.1016/j.molstruc.2014.10.070

    Article  CAS  Google Scholar 

  39. Maltceva O, Mamardashvili G, Khodov I, Lazovskiy D, Khodova V, Krest’yaninov M, Mamardashvili N, Dehaen W (2017) Molecular recognition of nitrogen–containing bases by Zn[5,15-bis-(2,6-dodecyloxyphenyl)]porphyrin. Supramol Chem 29:360–369. https://doi.org/10.1080/10610278.2016.1238473

    Article  CAS  Google Scholar 

  40. Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260:115–118. https://doi.org/10.1016/0009-2614(96)00838-X

    Article  CAS  Google Scholar 

  41. Wolfbeis OS (2008) Standardization and quality assurance in fluorescence measurements techniques. Springer Ser Fluoresc

  42. Lakowicz JR (ed) (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media

  43. Terenin AN (1967) Photonics of dye molecules. Nauka, Leningrad

    Google Scholar 

  44. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358. https://doi.org/10.1002/chin.199509296

    Article  CAS  Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  46. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  48. McLean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11–18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  49. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  Google Scholar 

  50. Yanai T, Tew D, Handy N (2004) “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  51. Nuraneeva EN, Guseva GB, Antina EV, Kuznetsova RT, Berezin MB, V’yugin AI (2016) Synthesis, spectral luminescent properties, and photostability of monoiodo- and dibromo-substituted BF2-dipyrrinates. Russ J Gen Chem 86:840–847. https://doi.org/10.1134/S1070363216040149

    Article  Google Scholar 

  52. Dudina NA, Berezin MB, Semeikin AS, Antina EV (2015) Difluoroborates of phenyl-substituted aza-dipyrromethenes: preparation, spectral properties, and stability in solution. Russ J Gen Chem 85:2739–2742. https://doi.org/10.1134/S1070363215120130

    Article  CAS  Google Scholar 

  53. Wood TE, Berno B, Beshara CS, Thompson A (2006) 15N NMR chemical shifts for the identification of dipyrrolic structures. J Org Chem 71:2964–2971. https://doi.org/10.1021/jo0524932

    Article  CAS  PubMed  Google Scholar 

  54. Qin W, Baruah M, der Auweraer MV, De Schryver FC, Boens N (2005) Photophysical properties of borondipyrromethene analogues in solution. J Phys Chem A 109:7371–7384. https://doi.org/10.1021/jp052626n

    Article  CAS  PubMed  Google Scholar 

  55. Bumagina NA, Antina EV, Berezin MB, Kalyagin AA (2017) Influence of structural and solvation factors on the spectral-fluorescent properties of alkyl-substituted BODIPYs in solutions. Spectrochim Acta A Mol Biomol Spectrosc 173: 228–234. https://doi.org/10.1016/j.saa.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  56. Leen V (2010) Synthesis and application of reactive BODIPY dyes. Doctoral Thesis. Katholieke Universiteit Leuven

  57. Dias de Rezende LC, Vaidergorn MM, Moraes JCB, da Silva Emery F (2014) Synthesis, photophysical properties and solvatochromism of meso-substituted tetramethyl BODIPY dyes. J Fluoresc 24:257–266. https://doi.org/10.1007/s10895-013-1293-8

    Article  Google Scholar 

  58. Nuraneeva EN, Guseva GB, Antina EV, Berezin MB, V’yugin AI (2016) Synthesis and luminescent properties of zinc(II) complexes with iodo- and bromosubstituted 2,2′-dipyrrines. J Luminesc 170:248–254. https://doi.org/10.1016/j.jlumin.2015.10.061

    Article  CAS  Google Scholar 

  59. Dudina NA, Nikonova AYu, Antina EV, Berezin MB, Vyugin AI (2014) Synthesis, spectral-luminescent properties and photostability of Zn(II) complexes with dipyrrins modified at the periphery and at the meso-spacer. Chem Heterocycl Compd 49:1740–1747. https://doi.org/10.1007/s10593-014-1426-2

    Article  CAS  Google Scholar 

  60. Cui A, Peng X, Fan J, Chen X, Wu Y, Guo B (2007) Synthesis, spectral properties and photostability of novel boron–dipyrromethene dyes. J Photochem Photobiol A 186:85–92. https://doi.org/10.1016/j.jphotochem.2006.07.015

    Article  CAS  Google Scholar 

  61. Zhang S, Wu T, Fan J, Li Zh, Jiang N, Wang J, Dou B, Sun Sh, Song F, Peng X (2013) A BODIPY-based fluorescent dye for mitochondria in living cells, with low cytotoxicity and high photostability. Org Biomol Chem 11:555–558. https://doi.org/10.1039/C2OB26911B

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR according to the research project No. 16-33-00611 mol_a and 16-33-00852 mol_a. We are grateful to the Interdisciplinary Supercomputer Center of the Russian Academy of Sciences (Moscow) for providing MBC 100 K cluster resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Ksenofontov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kritskaya, A.Y., Bumagina, N.A., Antina, E.V. et al. Synthesis and Photochemical Properties of 2,3;5,6-bis(cyclohexano)-BODIPY. J Fluoresc 28, 393–407 (2018). https://doi.org/10.1007/s10895-017-2201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2201-4

Keywords

Navigation