Skip to main content
Log in

Modulation of the Photophysical Properties of β-substituted BODIPY Dyes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Photophysical properties of BODIPY dyes containing acetyl acetone and benzoyl acetone BF2 unit as an electron accepting substituent at beta position linked via double bond have been investigated using a wide range of solvents of different polarities. The substitution effect at beta position of the BODIPY dyes on their absorption, emission and quantum yield of fluorescence have been the aim of present study. For the synthesized BODIPY dyes fluorescence quantum yields and lifetimes show very sharp decrease with an increase in the solvent polarity, suggesting the involvement of highly polar ICT state de-excitation mechanism along with the local excitation process. The polarity dependent changes in average fluorescence life time and quantum yield values rationalize the formation of ICT states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chibani S, Charaf-Eddin A, Le Guennic B, Jacquemin D (2013) Boranil and related NBO dyes: insights from theory. J Chem Theory Comput 9:3127–3135. https://doi.org/10.1021/ct400392r

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Z, Achilefu S (2005) Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range. Chem Commun 5887–5889. https://doi.org/10.1039/B512315A

  3. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172. https://doi.org/10.1039/C1CS15132K

    Article  CAS  PubMed  Google Scholar 

  4. Prandi C, Ghigo G, Occhiato EG, Scarpi D, Begliomini S, Lace B, Alberto G, Artuso E, Blangetti M (2014) Tailoring fluorescent strigolactones for in vivo investigations: a computational and experimental study. Org Biomol Chem 12:2960–2968. https://doi.org/10.1039/c3ob42592d

    Article  CAS  PubMed  Google Scholar 

  5. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77–88. https://doi.org/10.1039/C2CS35216H

    Article  CAS  PubMed  Google Scholar 

  6. Gong S, Liu Q, Wang X, Xia B, Liu Z, He W (2015) AIE-active organoboron complexes with highly efficient solid-state luminescence and their application as gas sensitive materials. Dalton Trans 44:14063–14070. https://doi.org/10.1039/C5DT01525A

    Article  CAS  PubMed  Google Scholar 

  7. Mukherjee S, Thilagar P (2016) Stimuli and shape responsive “boron-containing” luminescent organic materials. J Mater Chem C 4:2647–2662. https://doi.org/10.1039/C5TC02406D

    Article  CAS  Google Scholar 

  8. Loudet A, Burgess K (2007) Dyes BODIPY and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. https://doi.org/10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  9. Zhu S, Bi J, Vegesna G, Zhang J, Luo F-T, Valenzano L, Liu H (2013) Functionalization of BODIPY dyes at 2,6-positions through formyl groups. RSC Adv 3:4793–4800. https://doi.org/10.1039/C3RA22610G

    Article  CAS  Google Scholar 

  10. Buyukcakir O, Bozdemir OA, Kolemen S, Erbas S, Akkaya EU (2009) Tetrastyryl-bodipy dyes: convenient synthesis and characterization of elusive near IR fluorophores. Org Lett 11:4644–4647. https://doi.org/10.1021/ol9019056

    Article  CAS  PubMed  Google Scholar 

  11. Mani V, Krishnakumar VG, Gupta S, Mori S, Gupta I (2017) Synthesis and characterization of styryl-BODIPY derivatives for monitoring in vitro Tau aggregation. Sensors Actuators B Chem 244:673–683. https://doi.org/10.1016/j.snb.2016.12.104

    Article  CAS  Google Scholar 

  12. Zhao N, Vicente MGH, Fronczek FR, Smith KM (2015) Synthesis of 3,8-dichloro-6-ethyl-1,2,5,7-tetramethyl-BODIPY from an asymmetric dipyrroketone and reactivity studies at the 3,5,8-positions. Chemistry 21 6181–6192. https://doi.org/10.1002/chem.201406550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lakshmi V, Ravikanth M (2014) Synthesis of hexasubstituted boron-dipyrromethenes having a different combination of substituents. Eur J Org Chem 2014 5757–5766. https://doi.org/10.1002/ejoc.201402599

    Article  CAS  Google Scholar 

  14. Rohand T, Baruah M, Qin W, Boens N, Dehaen W (2006) Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution. Chem Commun 266–268. https://doi.org/10.1039/B512756D

  15. Dost Z, Atilgan S, Akkaya EU (2006) Distyryl-boradiazaindacenes: facile synthesis of novel near IR emitting fluorophores. Tetrahedron 62:8484–8488. https://doi.org/10.1016/j.tet.2006.06.082

    Article  CAS  Google Scholar 

  16. Kim E, Felouat A, Zaborova E, Ribierre J-C, Wu JW, Senatore S, Matthews C, Lenne P-F, Baffert C, Karapetyan A, Giorgi M, Jacquemin D, Ponce-Vargas M, Le Guennic B, Fages F, D’Aleo A (2016) Borondifluoride complexes of hemicurcuminoids as bio-inspired push-pull dyes for bioimaging. Org Biomol Chem 14:1311–1324. https://doi.org/10.1039/C5OB02295A

    Article  CAS  PubMed  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JV, Ortiz J, Cioslowski, Fox DJ (2009) Gaussian 09, Revision C.01, Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT. citeulike-article-id:9096580

  18. Bauernschmitt R, Häser M, Treutler O, Ahlrichs R (1997) Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. Chem Phys Lett 264:573–578. https://doi.org/10.1016/S0009-2614(96)01343-7

    Article  CAS  Google Scholar 

  19. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

  20. Yue Y, Guo Y, Xu J, Shao S (2011) A Bodipy-based derivative for selective fluorescence sensing of homocysteine and cysteine. New J Chem 35:61–64. https://doi.org/10.1039/C0NJ00720J

    Article  CAS  Google Scholar 

  21. Jiao L, Yu C, Li J, Wang Z, Wu M, Hao E (2009) β-formyl-BODIPYs from the Vilsmeier-Haack reaction. J Org Chem 74:7525–7528. https://doi.org/10.1021/jo901407h

    Article  CAS  PubMed  Google Scholar 

  22. Liu K, Chen J, Chojnacki J, Zhang S (2013) BF3·OEt2-promoted concise synthesis of difluoroboron-derivatized curcumins from aldehydes and 2,4-pentanedione. Tetrahedron Lett 54:2070–2073. https://doi.org/10.1016/j.tetlet.2013.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. More AB, Mula S, Thakare S, Chakraborty S, Ray AK, Sekar N, Chattopadhyay S (2017) An acac-BODIPY dye as a reversible “ON-OFF-ON” fluorescent sensor for Cu2 + and S2- ions based on displacement approach. J Lumin 190:476–484. https://doi.org/10.1016/j.jlumin.2017.06.005

    Article  CAS  Google Scholar 

  24. Satpati AK, Kumbhakar M, Nath S, Pal H (2008) Photoinduced electron transfer between quinones and amines in micellar media: tuning the Marcus inversion region. J Photochem Photobiol A Chem 200:270–276. https://doi.org/10.1016/j.jphotochem.2008.08.001

    Article  CAS  Google Scholar 

  25. Shaikh M, Pal H (2014) Photophysics of donor-acceptor kind of styryl dyes: involvement of twisted intramolecular charge transfer (TICT) state and the effect of solvent polarity

  26. Saroja G, Soujanya T, Ramachandram B, Samanta A (1998) 4-Aminophthalimide derivatives as environment-sensitive probes. J Fluoresc 8:405–410. https://doi.org/10.1023/A:1020536918438

    Article  CAS  Google Scholar 

  27. Pham THN, Clarke RJ (2008) Solvent dependence of the photochemistry of the styrylpyridinium dye RH421. J Phys Chem B 112:6513–6520. https://doi.org/10.1021/jp711694u

    Article  CAS  PubMed  Google Scholar 

  28. Popere BC, Della Pelle AM, Thayumanavan S (2011) BODIPY-based donor-acceptor pi-conjugated alternating copolymers. Macromolecules 44:4767–4776. https://doi.org/10.1021/ma200839q

    Article  CAS  Google Scholar 

  29. More AB, Mula S, Thakare S, Sekar N, Ray AK, Chattopadhyay S (2014) Masking and Demasking Strategies for the BF2-BODIPYs as a Tool for BODIPY Fluorophores. J Org Chem 79:10981–10987. https://doi.org/10.1021/jo502028g

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ABM sincerely thanks DAE-BRNS for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2008 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, A.B., Chakraborty, G., Mula, S. et al. Modulation of the Photophysical Properties of β-substituted BODIPY Dyes. J Fluoresc 28, 381–392 (2018). https://doi.org/10.1007/s10895-017-2200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2200-5

Keywords

Navigation