Skip to main content
Log in

Fluorescence Behavior of Schiff Base-N, N′-bis(salicylidene) Trans 1, 2-Diaminocyclohexane in Proteinous and Micellar Environments

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence properties of N, N′-bis(salicylidene) trans 1, 2-diaminocyclohexane (H 2 L) is used to probe the anionic (SDS), cationic (CTAB) and nonionic (TX-100) micelles as well as in serum albumins (BSA and HSA) and chicken egg white lysozyme (LYZ) by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found to increase with concomitant blue-shift with gradual addition of different surfactants. All the experimental results suggest that the probe molecule resides in the micelle-water interface rather than going into the micellar core. However, the penetration is more towards the micellar hydrocarbon core in nonionic surfactant (TX-100) while comparing with ionic surfactants (SDS and CTAB). Several mean microscopic properties such as critical micelle concentration, polarity parameters and binding constant were calculated in presence of different surfactants. The decrease in nonradiative decay rate constants in micellar environments indicates restricted motion of the probe inside the micellar nanocages with increasing fluorescence emission intensity and quantum yields. Further in this work, we also investigated the interaction behavior of the probe with different proteins at low concentrations under physiological conditions (pH = 7.4). Stern–Volmer analysis of the tryptophan (Trp) fluorescence quenching data in presence of probe reveals Stern–Volmer constant (Ksv) as well as bimolecular quenching rate constant (Kq). The binding constant as well as the number of binding sites of the probe with proteins were also monitored and found to be 1:1 stoichiometry ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fendler HJ (1982) Membrane mimetic chemistry. Wiley-Interscience, New York

    Google Scholar 

  2. Sakthivel T, Florence AT (2003) Dendrimers & dendrons: facets of pharmaceutical nanotechnology. Drug Deliv Technol 3:73–78

    Google Scholar 

  3. Anwer K, Meaney C, Kao G, Hussain N, Shelvin R, Earls RM, Leonard P, Quezada A, Roland AP, Sullivan SM (2000) Cationic lipid-based delivery system for systemic cancer gene therapy. Cancer Gene Ther 7:1156–1164

    Article  CAS  PubMed  Google Scholar 

  4. Kalyansundaram K (1991) Photochemistry in organized and constrained media, Ramamurthy V (ed). VCH Publishers, New York

    Google Scholar 

  5. Kalyanasundram K (1987) Photochemistry in microheterogeneous systems. Academic, New York

    Google Scholar 

  6. Mittal KL, Lindman B (1994) Surfactants in solution, vols 1–3. (Ed.). Plenum, New York

  7. Mallick A, Halder B, Maity S, Chattopadhyay N (2004) Constrained photophysics of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine in micellar environments: a spectrofluorometric study. J Colloid Interface Sci 278:215–223

    Article  CAS  PubMed  Google Scholar 

  8. Wagner BD (2009) The use of coumarins as environmentally sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14:210–237

    Article  CAS  PubMed  Google Scholar 

  9. Turro NJ, Grätzel M, Braun AM (1980) Photophysical and photochemical processes in micellar systems. Angew Chem Int Ed Engl 19:675–696

    Article  Google Scholar 

  10. Menger FM (1979) The structure of micelles. Acc Chem Res 12:111–117

    Article  CAS  Google Scholar 

  11. Adams PA, Berman MC (1980) Kinetics and mechanism of the interaction between human serum albumin and monomeric haemin. Biochem J 191:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    CAS  PubMed  Google Scholar 

  13. Baker ME (2002) Albumin, steroid hormones and the origin of vertebrates. J Endocrinol 175:121–127

    Article  CAS  PubMed  Google Scholar 

  14. Cater DC, Ho JX (1994) Structure and ligand binding properties of human serum albumin. Adv Protein Chem 45:153–203

    Article  Google Scholar 

  15. Olson RE, Christ DD (1996) Plasma protein binding of drugs. Annu Rep Med Chem 31:327–337

    Article  CAS  Google Scholar 

  16. Guo M, Zou JW, Yi PG, Shang ZC, Hu GX, Yu QS (2004) Binding interaction of gatifloxacin with bovine serum albumin. Anal Sci 20:465–470

    Article  CAS  PubMed  Google Scholar 

  17. Naik PN, Chimatadar SA, Nandibewoor ST (2010) Pharmacokinetic study on the mechanism of interaction of sulfacetamide sodium with bovine serum albumin: a spectroscopic method. Biopharm Drug Dispos 31:120–128

    CAS  PubMed  Google Scholar 

  18. Naik PN, Chimatadar SA, Nandibewoor ST (2009) Study on the interaction between antibacterial drug and bovine serum albumin: a spectroscopic approach. Spectrochim Acta Part A 73:841–845

    Article  CAS  Google Scholar 

  19. Gu AQ, Zhu XS, Hu YY, Yu SH (2007) A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumin and its analytical application. Talanta 73:668–673

    Article  Google Scholar 

  20. Zhang HM, Lou K, Cao J, Wang YQ (2014) Interaction of a hydrophobic functionalized PAMAM dendrimer with bovine serum albumin: thermodynamic and structural changes. Langmuir 30:5536–5544

    Article  CAS  PubMed  Google Scholar 

  21. Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR (2002) Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol 64:1355–1374

    Article  CAS  PubMed  Google Scholar 

  22. Putnam FW (1975) The plasma proteins: structure, function and genetic control, vol 1, 2nd edn. Academic Press, New York

  23. Hirayama K, Akashi S, Furuya M, Fukuhara K (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. Biochem Biophys Res Commun 173:639–646

    Article  CAS  PubMed  Google Scholar 

  24. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  PubMed  Google Scholar 

  25. Zhang LN, Wu FY, Lui AH (2011) Study of the interaction between 2, 5-di-[2-(4-hydroxy-phenyl) ethylene]-terephthalonitril and bovine serum albumin by fluorescence spectroscopy. Spectrochim Acta A 79:97–103

    Article  CAS  Google Scholar 

  26. Ali MS, Al-Lohedan HA, Rafiquee MZ, Atta AM, Ezzat AO (2015) Spectroscopic studies on the interaction between novel polyvinylthiol-functionalized silver nanoparticles with lysozyme. Spectrochim Acta A Mol Biomol Spectrosc 135:147–152

    Article  CAS  PubMed  Google Scholar 

  27. Gu Z, Zhu X, Ni S, Su Z, Zhou HM (2004) Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation. Int J Biochem Cell Biol 36:795–805

    Article  CAS  PubMed  Google Scholar 

  28. Fang Y, Yi L, Fang Y (2003) Unfolding of lysozyme induced by urea and guanidine hydrochloride studied by “phase diagram” method of fluorescence. Acta Chim Sin 61:803–807

    Google Scholar 

  29. Yang B, Wang JW, Tang B, Liu YF, Guo CD, Yang PH, Yu TA, Li R, Zhao JM, Zhang L, Dai YP, Li N (2011) Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS One 6:e17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jash C, Kumar GS (2014) Binding of alkaloids berberine, palmatine and coralyne to lysozyme: a combined structural and thermodynamic study. RSC Adv 4:12514–12525

    Article  CAS  Google Scholar 

  31. Paramaguru G, Kathiravan A, Selvaraj S, Venuvanalingam P, Renganathan R (2010) Interaction of anthraquinone dyes with lysozyme: evidences from spectroscopic and docking studies. J Hazar Mat 175:985–991

    Article  CAS  Google Scholar 

  32. Li S, Li D (2011) Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance. Spectrochim Acta A Mol Biomol Spectrosc 82:396–405

    Article  CAS  PubMed  Google Scholar 

  33. Zhang ZR, Zheng Q, Han J, Gao GP, Liu J, Gong T, Gu ZW, Huang Y, Sun X, He Q (2009) The targeting of 14-succinateriptolide-lysozyme conjugate to proximal renal tubular epithelial cells. Biomaterials 30:1372–1381

    Article  PubMed  Google Scholar 

  34. Ding F, Liu W, Liu F, Li ZY, Sun Y (2009) A study of the interaction between malachite green and lysozyme by steady-state fluorescenc. J Fluoresc 19:783–791

    Article  CAS  PubMed  Google Scholar 

  35. Yang ST, Wang H, Guo L, Gao Y, Liu Y, Cao A (2008) Interaction of fullerenol with lysozyme investigated by experimental and computational approaches. Nanotechnology 19:395101–395108

    Article  PubMed  Google Scholar 

  36. He WY, Li Y, Tang JH, Luan F, Jin J, Hu ZD (2006) Comparison of the characterization on binding of alpinetin and cardamonin to lysozyme by spectroscopic methods. Int J Biol Macromol 39:165–173

    Article  CAS  PubMed  Google Scholar 

  37. Mai WJ, Hu CQ (2009) cDNA cloning, expression and antibacterial activity of lysozyme C in the blue shrimp (Litopenaeus stylirostris). Prog Nat Sci 19:837–844

    Article  CAS  Google Scholar 

  38. Oevermann A, Engels M, Thomas U, Pellegrini A (2003) The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antivir Res 59:23–33

    Article  CAS  PubMed  Google Scholar 

  39. Hoq MI, Mitsuno K, Tsujino Y, Aoki T, Ibrahim HR (2008) Triclosan-lysozyme complex as novel antimicrobial macromolecule: a new potential of lysozyme as phenolic drug-targeting molecule. Int J Biol Macromol 42:468–477

    Article  CAS  PubMed  Google Scholar 

  40. Jash C, Payghan PV, Ghoshal N, Kumar GS (2014) Binding of the iminium and alkanolamine forms of sanguinarine to lysozyme: spectroscopic analysis, thermodynamics, and molecular modelling studies. J Phys Chem B 118:13077–13091

    Article  CAS  PubMed  Google Scholar 

  41. Ding F, Zhao G, Huang J, Sun Y, Zhang L (2009) Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme. Eur J Med Chem 44:4083–4089

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Li L, Xu ZB, Su JY, Li B, Huang JR (2014) Studies on the interaction of naringin palmitate with lysozyme by spectroscopic analysis. J Functional Foods 8:331–339

    Article  CAS  Google Scholar 

  43. Ghosh A, Brinda KV, Vishveshwara S (2007) Dynamics of lysozyme structure network: probing the process of unfolding. Biophys 92:2523–2535

    CAS  Google Scholar 

  44. Grieser F, Drummond CJ (1988) The physicochemical properties of self-assembled surfactant aggregates as determined by some molecular spectroscopic probe techniques. J Phys Chem 92:5580–5593

    Article  CAS  Google Scholar 

  45. Law KY (1981) Fluorescence probe for microenvironments: a new probe for micelle solvent parametres and premicellar aggregates. Photochem Photobiol 33:799–806

    Article  CAS  Google Scholar 

  46. Kano K, Ueno Y, Hashimoto S (1985) Fluorescence studies on the characterization and solubilizing abillties of sodium dodecyl sulfate, hexadecyltrimethylammonium chloride, and triton X-100 micelles. J Phys Chem 89:3161–3166

    Article  CAS  Google Scholar 

  47. Miyagishi S, Suzuki H, Asakawa T (1996) Microviscosity and aggregation number of potassium N-acylalaninate micelles in potassium chloride solution. Langmuir 12:2900–2905

    Article  CAS  Google Scholar 

  48. Baden N, Kajimoto O, Hara K (2002) High-pressure studies on aggregation number of surfactant micelle using fluorescence quenching method. J Phys Chem B 106:8621–8624

    Article  CAS  Google Scholar 

  49. Maiti NC, Krishna MMG, Britto PJ, Periasamy N (1997) Fluorescence dynamics of dye probes in micelles. J Phys Chem B 101:11051–11060

    Article  CAS  Google Scholar 

  50. Souza P, Garcia-Vazquez JA, Masaguer JR (1985) Synthesis and characterization of copper(II) and nickel(II) complexes of the Schiff base derived from 2-(2-aminophenyl) benzimidazole and salicylaldehyde. Trans Met Chem 10:410–412

    Article  CAS  Google Scholar 

  51. Salmon L, Thuéry P, Rivière E, Ephritikhine M (2006) Synthesis, structure, and magnetic behavior of a series of trinuclear schiff base complexes of 5f (UIV, ThIV) and 3d (CuII, ZnII) Ions. Inorg Chem 45:83–93

    Article  CAS  PubMed  Google Scholar 

  52. Epstein DM, Choudhary S, Churchill MR, Keil KM, Eliseev AV, Morrow JR (2001) Chloroform-soluble schiff-base Zn(II) or Cd(II) complexes from a dynamic combinatorial library. Inorg Chem 40:1591–1596

    Article  CAS  PubMed  Google Scholar 

  53. Jarrahpour AA, Motamedifar M, Pakshir K, Hadi N, Zarei M (2004) Synthesis of novel azo schiff bases and their antibacterial and antifungal activities. Molecules 9:815–824

    Article  CAS  PubMed  Google Scholar 

  54. Da Silveira VC, Luz JS, Oliveira CC, Graziani I, Ciriolo MR, Ferreira AM (2008) Double-strand DNA cleavage induced by oxindole-Schiff base copper(II) complexes with potential antitumor activity. J Inorg Biochem 102:1090–1103

    Article  PubMed  Google Scholar 

  55. Wang BD, Yang ZY, Qin DD, Chen ZN (2008) Synthesis, characterization, cytotoxic activity and DNA-binding properties of the Ln(III) complexes with ethylenediiminobi(6-hydroxy chromone-3-carbaldehyde) Schiff-base. J Photochem Photobiol A 194:49–58

    Article  CAS  Google Scholar 

  56. Wang PH, Keck JG, Lien EJ, Lai MMC (1990) Design, synthesis, testing, and quantitative structure-activity relationship analysis of substituted salicylaldehyde schiff bases of 1-amino-3-hydroxyguanidine tosylate as new antiviral agents against coronavirus. J Med Chem 33:608–614

    Article  CAS  PubMed  Google Scholar 

  57. Das A, Trousdale MD, Ren S, Lien EJ (1999) Inhibition of herpes simplex virus type 1 and adenovirus type 5 by heterocyclic Schiff bases of aminohydroxyguanidine tosylate. Antivir Res 44:201–208

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Yang ZY (2009) DNA binding affinity and antioxidative activity of copper (II) and zinc (II) complexes with a novel hesperetin Schiff base ligand. Inorg Chim Acta 362:4823–4831

    Article  CAS  Google Scholar 

  59. Flores-lopez LZ, Parra-Hake M, Somanathan R, Walsh PJ (2000) Structure /enantioselectivity study of the asymmetric addition of trimethylsilylcyanide to benzaldehyde catalyzed by Ti(IV)-Schiff Base Complexes. Organometallics 19:2153–2160

    Article  CAS  Google Scholar 

  60. Tisato F, Refosco F, Bandoli G (1994) Structural survey of technetium complexes. Coord Chem Rev 135:325–397

    Article  Google Scholar 

  61. Kasselouri S, Garoufis A, Katehanakis A, Kalkanis G, Perlepes SP, Hadjiliadis N (1993) 1:1 Metal complexes of 2-(2′-pyridyl)quinoxaline, a ligand unexpectedly formed by the reaction between 2-acetylpyridine and 1,2-phenylenediamine. Inorg Chim Acta 207:255–258

    Article  CAS  Google Scholar 

  62. Sunaga SAS, Taniguchi T, Miyazaki H, Nabeshima T (2007) Core/shell oligometallic template synthesis of macrocyclic hexaoxime. Inorg Chem 46:2959–2961

    Article  PubMed  Google Scholar 

  63. Quiroga AG, Ranninger CN (2004) Contribution to the SAR field of metallated and coordination complexes: studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord Chem Rev 248:119–133

    Article  CAS  Google Scholar 

  64. Elerman Y, Kabak M, Elmali A (2002) Crystal structure and conformation of N-(5-Chlorosalicylidene)-2-hydroxy-5-chloroaniline. Z Naturforsch B 57:651–656

    CAS  Google Scholar 

  65. Roy N, Pramanik HAR, Paul PC, Singh TS (2014) A sensitive schiff-base fluorescent chemosensor for the selective detection of Zn2+. J Fluoresc 24:1099–1106

    Article  PubMed  Google Scholar 

  66. Lakowicz JR (2006) Principle of fluorescence spectroscopy. Plenum, New York

    Book  Google Scholar 

  67. Demas JN, Crosby GA (1971) Measurement of photoluminescence quantum yields review. J Phys Chem 75:991–1024

    Article  Google Scholar 

  68. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc, New York

    Google Scholar 

  69. Das SK, Bansal A, Dogra SK (1997) Excited state intramolecular proton transfer reactions in 2-(2-hydroxyphenyl)benzimidazole in micellar solutions. Bull Chem Soc Jpn 70:307–313

    Article  CAS  Google Scholar 

  70. Roy N, Paul PC, Singh TS (2015) Fluorescence characteristics of Schiff base-N,N/-bis(salicylidene) trans 1,2-diaminocyclohexane in the presence of bile acid host. J Mol Liq 211:1052–1059

    Article  CAS  Google Scholar 

  71. Chakrabarty D, Hazra P, Sarkar N (2003) Solvation dynamics of Coumarin 480 in TritonX-100 (TX-100) and bile salt mixed micelles. J Phys Chem A 107:5887–5893

    Article  CAS  Google Scholar 

  72. Mysels KJ, Princen LH (1959) Light scattering by some Lauryl Sulfate solutions. J Phys Chem 63:1696–1700

    Article  CAS  Google Scholar 

  73. Kano K, Ueno Y, Umakoshi K, Hashimoto S, Ishibashi T, Ogawa T (1984) Freeze-thaw effect on the solubilization of hydrophobic compounds in micelles and artificial bilayer membranes. J Phys Chem 88:5087–5092

    Article  CAS  Google Scholar 

  74. Dutt GB (2004) Are the experimentally determined microviscosities of the micelles probe dependent? J Phys Chem B 108:3651–3657

    Article  CAS  Google Scholar 

  75. Sarpal RS, Belletete M, Durocher G (1993))Fluorescence probing and proton-transfer equilibrium reactions in water, SDS, and CTAB Using 3,3-Dimethyl-Z-pheny1-3H-indol. J Phys Chem 97:5007–5013

    Article  CAS  Google Scholar 

  76. Ramachandran C, Pyter RA, Mukherjee P (1982) Microenvironmental effects on transition energies and effective polarities of nitroxides solubilized in micelles of different charge types and the effect of electrolytes on the visible spectra of nitroxides in aqueous solutions. J Phys Chem 86:3198–3205

    Article  CAS  Google Scholar 

  77. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. detection of structural fluctuations in proteins on the nanosecond time scale. BioChemistry 12:4171–4179

    Article  CAS  PubMed  Google Scholar 

  78. Ashby KD, Das K, Petrich JW (1997) The effect of micelles on the steady-state and time-resolved fluorescence of indole, 1-Methylindole, and 3-Methylindole in aqueous media. Anal Chem 69:1925–1930

    Article  CAS  Google Scholar 

  79. Maciejewski A, Kubicki J, Dobek K (2003) The origin of Time-Resolved Emission Spectra (TRES) changes of 4-Aminophthalimide (4-AP) in SDS Micelles. the role of the hydrogen bond between 4-AP and water present in micelles. J Phys Chem B 107:13986–13999

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support through Start-Up Research Grant (Chemical Sciences) project No. SB/FT/CS-064/2012 from Science and Engineering Research Board (SERB), Government of India were gratefully acknowledged by Dr. T. Sanjoy Singh. The authors are indebted to Dr. S. Mitra and his research scholars for their help in TCSPC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sanjoy Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, N., Nath, S., Paul, P.C. et al. Fluorescence Behavior of Schiff Base-N, N′-bis(salicylidene) Trans 1, 2-Diaminocyclohexane in Proteinous and Micellar Environments. J Fluoresc 27, 2295–2311 (2017). https://doi.org/10.1007/s10895-017-2171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2171-6

Keywords

Navigation