Skip to main content
Log in

A Dual-Signaling Ferrocene-Pyrene Dyad: Triple-Mode Recognition of the Cu(II) Ions in Aqueous Medium

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We report a structure of ferrocene-pyrene conjugate (1) comprising electro and photo-active dual-signaling units. In particular, 1 upon interaction with Cu(II), displays selectively one-photon fluorescence quenching, but it shows two-photon absorption (TPA) cross-section 1230 GM (at 780 nm). Further, 1 displayed two irreversible oxidative waves at 0.39 V and 0.80 V (vs Ag/AgCl), in the electrochemical analysis which upon addition of Cu2+, led to the negative potential shift in both the oxidative waves to appear at 0.25 V and 0.68 V. The triple mode changes in presence of Cu(II) suggesting the possible application of 1 for the detection of Cu(II) in aqueous media.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yeunga MC-L, Yam VW-W (2015) Luminescent cation sensors: from host–guest chemistry, supramolecular chemistry to reaction-based mechanisms. Chem Soc Rev 44:4192–4202

    Article  Google Scholar 

  3. Wani MA, Singh PK, Pandey R, Pandey MD (2016) Coumarin–pyrene conjugate: synthesis, structure and Cu-selective fluorescent sensing in mammalian kidney cells. J Lumin 171:159–165

    Article  CAS  Google Scholar 

  4. Domaille DW, Zeng L, Chang CJ (2010) Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor. J Am Chem Soc 132:1194–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang R, Lei K, Chen K, Zhao H, Chen J (2011) A rhodamine-based off–on fluorescent chemosensor for selectively sensing Cu(II) in aqueous solution. J Fluoresc 21:141–148

    Article  CAS  PubMed  Google Scholar 

  6. Hsieh Y-C, Chir J-L, Yang S-T, Chen S-J, Hu C-H, Wu A-T (2011) A sugar-aza-crown ether-based fluorescent sensor for Cu2+ and Hg2+ ions. Carbohydr Res 346:978–981

    Article  CAS  PubMed  Google Scholar 

  7. Chandrasekhar V, Pandey MD (2011) Fluorescence sensing of Cu2+ and Hg2+ by a dipyrene ligand involving an excimer-switch off mechanism. Tetrahedron Lett 52:1938–1941

    Article  CAS  Google Scholar 

  8. Chandrasekhar V, Pandey MD, Bag P, Pandey S (2009) A modular ligand design for cation sensors: phosphorus-supported pyrene-containing ligands as efficient Cu(II) and Mg(II) sensors. Tetrahedron 65:4540–4546

    Article  CAS  Google Scholar 

  9. Pandey MD, Mishra AK, Chandrasekhar V, Verma S (2010) Silver-guided excimer emission in an Adenine-Pyrene conjugate: fluorescence lifetime and crystal studies. Inorg Chem 49:2020–2022

    Article  CAS  PubMed  Google Scholar 

  10. Chandrasekhar V, Bag P, Pandey MD (2009) Phosphorus-supported multidentate coumarin-containing fluorescence sensors for Cu2+. Tetrahedron 65:9876–9883

    Article  CAS  Google Scholar 

  11. Faggi E, Serra-Vinardell J, Pandey MD, Casa J, Fabriàs G, Luis SV, Alfonso I (2016) Pseudopeptidic fluorescent on-off pH sensor based on pyrene excimer emission: imaging of acidic cellular organelles. Sensors Actuators B 234:633–640

    Article  CAS  Google Scholar 

  12. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995

    Article  CAS  PubMed  Google Scholar 

  13. Khatua S, Choi SH, Lee J, Huh JO, Do Y, Churchill DG (2009) Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement. Inorg Chem 48:1799

    Article  CAS  PubMed  Google Scholar 

  14. Yan S, Leen V, Snick SV, Boens N, Dehaen W (2010) A highly sensitive, selective, colorimetric and near-infrared fluorescent turn-on chemosensor for Cu2+ based on BODIPY. Chem Commun 46:6329

    Article  Google Scholar 

  15. Jung HS, Park M, Han DY, Kim E, Lee C, Ham S, Kim JS (2009) Cu2+ ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. Org Lett 11:3378

    Article  CAS  PubMed  Google Scholar 

  16. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan SH, Lee JY, Lee JH, Joo TH, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008

    Article  CAS  PubMed  Google Scholar 

  17. Chandrasekhar V, Das S, Yadav R, Hossain S, Parihar R, Subramaniam G, Sen P (2012) Novel chemosensor for the visual detection of copper(II) in aqueous solution at the ppm level. Inorg Chem 51:8664

    Article  CAS  PubMed  Google Scholar 

  18. Carpentieri U, Myers J, Thorpe L, Daeschner CW III, Haggard ME (1986) Copper, zinc, and iron in normal and leukemic lymphocytes from children. Cancer Res 46:981

    CAS  PubMed  Google Scholar 

  19. Halfdanarson TR, Kumar N, Li CY, Phyliky RL, Hogan WJ (2008) Hematological manifestations of copper deficiency: a retrospective review. Eur J Haematol 80:523

    Article  CAS  PubMed  Google Scholar 

  20. Jaiser SR, Winston GP (2010) Copper deficiency myelopathy. J Neurol 257:869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moghaddam MM, Pirouzi M, Saberi MR, Chamani J (2014) Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques. Luminescence 29:314–331

  22. Chamani J (2010) Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J Mol Struct 979:227–234

    Article  CAS  Google Scholar 

  23. Bakaeean B, Kabiri M, Iranfar H, Saberi MR, Chamani J (2012) Binding effect of common ions to human serum albumin in the presence of norfloxacin: investigation with spectroscopic and zeta potential approaches. J Sol Chem 41:1777–1801

    Article  CAS  Google Scholar 

  24. Kabiri M, Chamani J (2012) Study of the ropinirole hydrochloride interactions with human holo-transferrin in the presence of common metal ions. J Iran Chem Soc 9:625–633

    Article  CAS  Google Scholar 

  25. He GS, Tan L-S, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108:1245–1330

    Article  CAS  PubMed  Google Scholar 

  26. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 48:3244–3266

    Article  CAS  Google Scholar 

  27. Albota M, Beljonne D, Bredas J-L, Ehrlich JE, Fu J-Y, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry W, Rockel JH, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–1656

    Article  CAS  PubMed  Google Scholar 

  28. Cai Z, Deng L, Zhou M, Gao J, Sun Z (2010) Third-order nonlinear optical studies of new anthraquinone derivatives. Opt Commun 283:5199–5202

    Article  CAS  Google Scholar 

  29. Jana A, Lim JM, Park SW, Kim D, Bharadwaj PK (2011) A comparative study of third order optical nonlinearity of symmetrical dipolar chromogenic probes and their enhancement by different metal ions. Ind J Chem A 50A:511–518

    CAS  Google Scholar 

  30. Jana A, Jang SY, Shin J-Y, De AK, Goswami D, Kim D, Bharadwaj PK (2008) Attachment of different donor groups to a cryptand for modulation of two-photon absorption cross-section. Chem Eur J 14:10628–10638

    Article  CAS  PubMed  Google Scholar 

  31. Lee SK, Yang WS, Choi JJ, Kim CH, Jeon SJ, Cho BR (2005) 2,6-Bis[4-(p-dihexylaminostyryl)styryl]anthracene derivatives with large two-photon cross sections. Org Lett 7:323–326

    Article  CAS  PubMed  Google Scholar 

  32. Abbotto A, Beverina L, Bozio R, Facchetti A, Ferrante C, Pagani GA, Pedron D, Signorini R (2002) Novel heterocycle-based two-photon absorbing dyes. Org Lett 4:1495–1498

    Article  CAS  PubMed  Google Scholar 

  33. Wei P, Bi X, Wu Z (2005) Synthesis of triphenylamine-cored dendritic two-photon absorbing chromophores. Org Lett 7:3199–3202

    Article  CAS  PubMed  Google Scholar 

  34. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Ensley TR, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachkovski AD, Hagan DJ, VanStryland EW (2010) Efficient two-photon absorbing acceptor-π-acceptor polymethine dyes. J Phys Chem A 114:6493–6501

    Article  CAS  PubMed  Google Scholar 

  35. Shao P, Huang Z, Li J, Chen S, Luo J, Qin J, Liu B (2006) Two-photon absorption properties of two (dicyanomethylene)-pyran derivatives. Opt Mat 29:337–341

    Article  CAS  Google Scholar 

  36. Misra R, Kumar R, Chandrashekar TK, Suresh CH, Nag A, Goswami D (2006) 22π Smaragdyrin molecular conjugates with aromatic Phenylacetylenes and Ferrocenes: syntheses, electrochemical, and photonic properties. J Am Chem Soc 128:16083–16091

    Article  CAS  PubMed  Google Scholar 

  37. Kim HM, Lee YO, Lim CS, Kim JS, Cho BR (2008) Two-photon absorption properties of alkynyl-conjugated pyrene derivatives. J Org Chem 73:5127–5130

    Article  CAS  PubMed  Google Scholar 

  38. Rumi M, Barlow S, Wang J, Perry JW, Marder SR (2008) Two-photon absorbing materials and two-photon-induced chemistry. Adv Polym Sci 213:1–95

  39. Hu J-Y, Era M, Elsegood MRJ, Yamato T (2010) Synthesis and photophysical properties of pyrene-based light-emitting monomers: highly pure-blue-fluorescent, cruciform-shaped architectures. Eur J Org Chem 2010:72–79

    Article  Google Scholar 

  40. Bhaskar A, Ramakrishna G, Twieg RJ, Goodson T III (2007) Zinc sensing via enhancement of two-photon excited fluorescence. J Phys Chem C 111:14607–14611

    Article  CAS  Google Scholar 

  41. Tian Y, Chen C-Y, Yang C-C, Young AC, Jang S-H, Chen W-C, Jen AK-Y (2008) 2-(2′-Hydroxyphenyl)benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions. Chem Mater 20:1977–1987

    Article  CAS  Google Scholar 

  42. Shi Z, Han Q, Yang L, Yang H, Tang X, Dou W, Li Z, Zhang Y, Shao Y, Guan L, Liu W (2015) A highly selective two-photon fluorescent probe for detection of cadmium(II) based on intramolecular electron transfer and its imaging in living cells. Chem Eur J 21:290–297

    Article  CAS  PubMed  Google Scholar 

  43. Chandrasekhar V, Azhakar R, Murgesapandian B, Senapati T, Bag P, Pandey MD, Maurya SK, Goswami D (2010) Synthesis, structure, and two-photon absorption studies of a phosphorus-based tris hydrazone ligand (S)P[N(Me)NdCH-C6H3-2-OH-4-N(CH2CH3)2]3 and its metal complexes. Inorg Chem 49:4008–4016

    Article  CAS  PubMed  Google Scholar 

  44. Chandrasekhar V, Pandey MD, Maurya SK, Sen P, Goswami D (2011) Two-photon absorption technique for selective detection of Copper(II) ions in aqueous solutions using a Dansyl-pyrene conjugate. Chem Asian J 6:2246–2250

    Article  CAS  PubMed  Google Scholar 

  45. Zhang P, Pei L, Chen Y, Xu W, Lin Q, Wang J, Wu J, Shen Y, Ji L, Chao Y (2013) A dinuclear ruthenium(II) complex as a one- and two-photon luminescent probe for biological Cu2+ detection. Chem Eur J 19:15494–15503

    Article  CAS  PubMed  Google Scholar 

  46. Lai RY, Fleming JJ, Merner BL, Vermeij RJ, Bodwell GJ, Bard AJ (2004) Electrogenerated chemiluminescence. 74. Photophysical, electrochemical, and electrogenerated chemiluminescent studies of selected nonplanar pyrenophanes. J Phys Chem A 108:376–383

    Article  CAS  Google Scholar 

  47. Padamati SK, Draksharapu A, Unjaroen D, Browne WR (2016) Conflicting role of water in the activation of H2O2 and the formation and reactivity of non-heme FeIII–OOH and FeIII–O–FeIII complexes at room temperature. Inorg Chem 55:4211–4222

    Article  CAS  PubMed  Google Scholar 

  48. Pandey MD, Martí-Centelles V, Burguete MI, Montoya N, Luis SV, García-España E, Doménech-Carbó A (2016) Bisferrocenyl-functionalized pseudopeptides: access to separated ionic and electronic contributions for electrochemical anion sensing. RSC Adv 6:35257–35266

    Article  CAS  Google Scholar 

  49. Zapata F, Caballero A, Espinosa A, Tárraga A, Molina P (2007) A simple but effective ferrocene derivative as a redox, colorimetric, and fluorescent receptor for highly selective recognition of Zn2+ ions. Org Lett 9:2385–2388

    Article  CAS  PubMed  Google Scholar 

  50. Kulhnek J, Bures F, Kuznik W, Kityk IV, Mikysek T, Ruzicka A (2013) Ferrocene-donor and 4,5-dicyanoimidazole-acceptor moieties in charge- transfer chromophores with π linkers tailored for second-order nonlinear optics. Chem Asian J 8:465–475

    Article  Google Scholar 

  51. Kaur M, Kaur P, Dhuna V, Singh S, Singh K (2014) A ferrocene–pyrene based ‘turn-on’ chemodosimeter for Cr3+ – application in bioimaging. Dalton Trans 43:5707–5712

    Article  CAS  PubMed  Google Scholar 

  52. Keli Z, Baofeng G, Xue Z, Kedi C, Lijun T, Longyi J (2015) Ionics fluorescent chemsensor based on pyrene. Prog Chem 27:1230–1239

    Google Scholar 

  53. Chang X, Wang G, Yu C, Wang Y, He M, Fan J, Fang Y (2015) Studies on the photochemical stabilities of some fluorescent films based on pyrene and pyrenyl derivatives. J Photochem Photobiol A Chem 298:9–16

    Article  CAS  Google Scholar 

  54. Venkatesan P, Wu S-P (2015) A turn-on fluorescent pyrene-based chemosensor for Cu(II) with live cell application. RSC Adv 5:42591–42596

    Article  CAS  Google Scholar 

  55. Wu Y-S, Li C-Y, Li Y-F, Li D, Li Z (2016) Development of a simple pyrene-based ratiometric fluorescent chemosensor for copper ion in living cells. Sensors Actuators B 222:1226–1232

    Article  CAS  Google Scholar 

  56. Dawson WR, Windsor MW (1968) Fluorescence yields of aromatic compounds. J Phys Chem 72:3251–3260

    Article  CAS  Google Scholar 

  57. Bag B, Bharadwaj PK (2005) Perturbation of the PET process in fluorophore-spacer-receptor systems through structural modification: transition metal induced fluorescence enhancement and selectivity. J Phys Chem B 109:4377–4390

    Article  CAS  PubMed  Google Scholar 

  58. Sen P, Roy D, Mondal SK, Sahu K, Ghosh S, Bhattacharyya K (2005) Fluorescence anisotropy decay and solvation dynamics in a nanocavity: coumarin 153 in methyl â-Cyclodextrins. J Phys Chem A 109:9716–9722

    Article  CAS  PubMed  Google Scholar 

  59. Fujimoto K, Shimizu H, Inouye M (2004) Unambiguous detection of target DNAs by excimer-monomer switching molecular beacons. J Org Chem 69:3271–3275

    Article  CAS  PubMed  Google Scholar 

  60. Sheik-Bahae M, Said AA, Wei T, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769

    Article  CAS  Google Scholar 

  61. Das S, Nag A, Goswami D, Bharadwaj PK (2006) Zinc(II)- and copper(I)-mediated large two-photon absorption cross sections in a bis-cinnamaldiminato Schiff base. J Am Chem Soc 128:402–403

  62. Nag A, De AK, Goswami D (2009) Two-photon cross-section measurements using an optical chopper: z-scan and two-photon fluorescence schemes. J Phys B: At Mol Opt Phys 42:065103

    Article  Google Scholar 

  63. Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, Vellis P, Mikroyannidis J (2007) A two-photon absorption study of fluorene and carbazole derivatives. The role of the central core and the solvent polarity. Chem Phys Lett 447:300–304

    Article  CAS  Google Scholar 

  64. Sengupta P, Balaji J, Banerjee S, Philip R, Ravindra Kumar G, Maiti SJ (2000) Sensitive measurement of absolute two-photon absorption cross sections. J Chem Phys 112:9201

    Article  CAS  Google Scholar 

  65. Tian P, Warren WS (2002) Ultrafast measurement of two-photon absorption by loss modulation. Opt Lett 27:1634

    Article  PubMed  Google Scholar 

  66. Brauge L, Vériot G, Franc G, Deloncle R, Caminade A-M, Majoral J-P (2006) Synthesis of phosphorus dendrimers bearing chromophoric end groups: toward organic blue light-emitting diodes. Tetrahedron 62:11891–11899

    Article  CAS  Google Scholar 

  67. Oar MA, Dichtel WR, Serin JM, Frechet J, Rogers MJ, Slagle JEJE, Fleitz PA, Tan L-S, Ohulchanskyy TY, Prasad PN (2006) Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET. Chem Mater 18:3682–3692

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MAW is thankful to UGC for providing financial assistance and Department of Chemistry, Dr. H. S. Gour Central University Sagar, India, for providing the necessary facilities. MDP is thankful to UGC India for UGC-startup grant [F.No.30–56/2014(BSR)] and DST India for SERB research grant (EMR/2016/001779). RPP acknowledges DST for providing financial assistance through DST-Inspire Faculty scheme (IFA12-CH-66). SKM is thankful to UGC India for a fellowship. DG thanks the Welcome Trust International Senior Research Fellowship (UK) funds. We are thankful to Prof V Chandrasekhar and Prof Sandeep verma; IIT Kanpur for constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mrituanjay D. Pandey, Rampal Pandey or Debabrata Goswami.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supporting Information should be included CCDC number 820,409 for 1, contains the supplementary crystallographic data. These data can be obtained from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. Crystallographic in-formation and tables, Job’s plot.

Supplementary material 1 (DOC 1127 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, M.A., Pandey, M.D., Pandey, R. et al. A Dual-Signaling Ferrocene-Pyrene Dyad: Triple-Mode Recognition of the Cu(II) Ions in Aqueous Medium. J Fluoresc 27, 2279–2286 (2017). https://doi.org/10.1007/s10895-017-2169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2169-0

Keywords

Navigation