Skip to main content
Log in

Investigation of NLO Properties of Fluorescent BORICO Dyes: a Comprehensive Experimental and Theoretical Approach

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

BORICO dyes with N, N-diethyl as a strong donor and BF2 complexed iminocoumarin six member core as strong acceptor are investigated as an efficient non linear optical chromophores. Extended π-conjugation over iminocoumarin moiety is useful to make ICT character of BORICO dyes more significant and is established on the scale of Generalised Mulliken Hush analysis scale. Bond length alternation and bond order alternation values for three BORICO chromophores estimates the cyanine like framework for optimal non linear optical response. The frontier molecular orbital diagrams obtained from density functional theory calculations shows that there is charge transfer from donor to accepter as well as effective overlap between them making the basis for optimal NLO response of BORICO chromophores. The theoretical values of linear and non linear optical responses for three BORICO NLOphores obtained by using three different functionals B3LYP, CAMB3LYP and BHandHLYP with 6-311+g(d,p) basis set are quite consistent for the values of static dipole moment (μ), linear polarizability (α) and first hyperpolarizability (β). However in case of the γ values calculation, compare to the similar values obtained by CAMB3LYP and BHandHLYP functionals, B3LYP overestimates the same. The vibrational motions play decisive role in the overall non linear optical properties of BORICO chromophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gupta S, Rafiq S, Sen P (2015) Dynamics of solvent response in methanol–chloroform binary solvent mixture: a case of synergistic solvation. J Phys Chem B 119:3135–3141. doi:10.1021/jp5120338

    Article  CAS  PubMed  Google Scholar 

  2. Cole JM (2003) Organic materials for second-harmonic generation: advances in relating structure to function. Philos Trans R Soc Lond Ser A 361:2751 LP-2770

    Article  Google Scholar 

  3. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242. doi:10.1021/cr00025a007

    Article  CAS  Google Scholar 

  4. Duarte FJ (1999) Dye laser principles. Academic Press, New York

    Google Scholar 

  5. Li H, Zhang Y, Luo Y, Sun X (2011) Nano-C60: a novel, effective, fluorescent sensing platform for biomolecular detection. Small 7:1562–1568. doi:10.1002/smll.201100068

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Tian J, Wang L et al (2011) Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection. J Mater Chem 21:824–828. doi:10.1039/C0JM02695F

    Article  CAS  Google Scholar 

  7. Tathe AB, Sekar N (2016) Red emitting NLOphoric 3-styryl coumarins: experimental and computational studies. Opt Mater (Amst) 51:121–127. doi:10.1016/j.optmat.2015.11.031

    Article  CAS  Google Scholar 

  8. Sahraoui B, Phu XN, Sallé M, Gorgues A (1998) Electronic and nuclear contributions to the third-order nonlinear optical susceptibilities of new p-N, N?-dimethylaniline tetrathiafulvalene derivatives. Opt Lett 23:1811–1813. doi:10.1364/OL.23.001811

    Article  CAS  PubMed  Google Scholar 

  9. Kawski A, Kukliński B, Bojarski P (2006) Dipole moment of benzonitrile in its excited S1 state from thermochromic shifts of fluorescence spectra. Chem Phys Lett 419:309–312. doi:10.1016/j.cplett.2005.12.007

    Article  CAS  Google Scholar 

  10. Chun H, Moon IK, Shin D-H, Kim N (2001) Preparation of highly efficient polymeric photorefractive composite containing an isophorone-based NLO chromophore. Chem Mater 13:2813–2817. doi:10.1021/cm000913s

    Article  CAS  Google Scholar 

  11. Abraham E, Oberlé J, Jonusauskas G et al (1997) Photophysics of 4-dimethylamino 4′-cyanostilbene and model compounds: dual excited states revealed by sub-picosecond transient absorption and Kerr ellipsometry. Chem Phys 214:409–423. doi:10.1016/S0301-0104(96)00301-1

    Article  CAS  Google Scholar 

  12. Carlotti B, Flamini R, Kikaš I et al (2012) Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem Phys 407:9–19. doi:10.1016/j.chemphys.2012.08.006

    Article  CAS  Google Scholar 

  13. Liu F, Xu H, Zhang H et al (2016) Synthesis of julolidine-containing nonlinear optical chromophores: achieving excellent electro-optic activity by optimizing the bridges and acceptors. Dye Pigment 134:358–367. doi:10.1016/j.dyepig.2016.07.038

    Article  CAS  Google Scholar 

  14. Oudar JL, Chemla DS (1975) Theory of second-order optical susceptibilities of benzene substitutes. Opt Commun 13:164–168. doi:10.1016/0030-4018(75)90033-4

    Article  CAS  Google Scholar 

  15. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668. doi:10.1063/1.434213

    Article  CAS  Google Scholar 

  16. Zyss J (1979) Hyperpolarizabilities of substituted conjugated molecules. II. Substituent effects and respective σ–π contributions. J Chem Phys 70:3341–3349. doi:10.1063/1.437919

    Article  CAS  Google Scholar 

  17. Lanke SK, Sekar N (2016) Coumarin push–pull NLOphores with red emission: solvatochromic and theoretical approach. J Fluoresc 26:949–962. doi:10.1007/s10895-016-1783-6

    Article  CAS  PubMed  Google Scholar 

  18. Lanke SK, Sekar N (2015) Rigid coumarins: a complete DFT, TD-DFT and non linear optical property study. J Fluoresc 25:1469–1480. doi:10.1007/s10895-015-1638-6

    Article  CAS  PubMed  Google Scholar 

  19. Sun Y-F, Wang H-P, Chen Z-Y, Duan W-Z (2013) Solid-state fluorescence emission and second-order nonlinear optical properties of coumarin-based fluorophores. J Fluoresc 23:123–130. doi:10.1007/s10895-012-1125-2

    Article  PubMed  Google Scholar 

  20. Iliopoulos K, Krupka O, Gindre D, Sallé M (2010) Reversible two-photon optical data storage in coumarin-based copolymers. J Am Chem Soc 132:14343–14345. doi:10.1021/ja1047285

    Article  CAS  PubMed  Google Scholar 

  21. Tathe AB, Sekar N (2016) Red emitting coumarin-azo dyes: synthesis, characterization, linear and non-linear optical properties-experimental and computational approach. J Fluoresc 26:1279–1293. doi:10.1007/s10895-016-1815-2

    Article  CAS  PubMed  Google Scholar 

  22. Moylan CR (1994) Molecular hyperpolarizabilities of coumarin dyes. J Phys Chem 98:13513–13516. doi:10.1021/j100102a014

    Article  CAS  Google Scholar 

  23. Roubinet B, Massif C, Moreau M et al (2015) New 3-(Heteroaryl)-2-iminocoumarin-based borate complexes: synthesis, photophysical properties, and rational functionalization for biosensing/biolabeling applications. Chem Eur J 21:14589–14601. doi:10.1002/chem.201502126

    Article  CAS  PubMed  Google Scholar 

  24. Frath D, Poirel A, Ulrich G et al (2013) Fluorescent boron(iii) iminocoumarins (Boricos). Chem Commun 49:4908–4910. doi:10.1039/C3CC41555D

    Article  CAS  Google Scholar 

  25. Ulrich G, Barsella A, Boeglin A et al (2014) BODIPY-bridged push-pull chromophores for nonlinear optical applications. Chemphyschem 15:2693–2700. doi:10.1002/cphc.201402123

    Article  CAS  PubMed  Google Scholar 

  26. Acebal P, Blaya S, Carretero L (2003) Dipyrromethene–BF2 complexes with optimized electrooptic properties. Chem Phys Lett 382:489–495. doi:10.1016/j.cplett.2003.10.125

    Article  CAS  Google Scholar 

  27. Shi W-J, Lo P-C, Singh A et al (2012) Synthesis and second-order nonlinear optical properties of push–pull BODIPY derivatives. Tetrahedron 68:8712–8718. doi: 10.1016/j.tet.2012.08.033

    Article  CAS  Google Scholar 

  28. Suresh S, Ramanand A (2012) Review on theoretical aspect of nonlinear optics. Rev Adv Mat Sci 30:175–183

    CAS  Google Scholar 

  29. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446. doi:10.1063/1.434888

    Article  CAS  Google Scholar 

  30. Oudar JL, Le Person H (1975) Second-order polarizabilities of some aromatic molecules. Opt Commun 15:258–262. doi:10.1016/0030-4018(75)90298-9

    Article  CAS  Google Scholar 

  31. Sutherland RL (2003) Handbook of nonlinear optics, 2nd edition. Marcel Dekker, Inc

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Roob M, Cheeseman JR, Scalmani G, Barone V, Mennucci B PG, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, et al (2010) Gaussian 09 revision C01

  33. Dennington R, Keith T, Millam J (2017) GaussView 5 citation. http://www.surfchem.fudan.edu.cn/teacher/lizh/Usefull_Files/g09/g_tech/gv5ref/gv5citation.htm. Accessed 16 Feb 2017

  34. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346. doi:10.1063/1.469408

    Article  CAS  Google Scholar 

  35. Menzel R, Ogermann D, Kupfer S et al (2012) 4-Methoxy-1,3-thiazole based donor-acceptor dyes: characterization, X-ray structure, DFT calculations and test as sensitizers for DSSC. Dye Pigment 94:512–524. doi:10.1016/j.dyepig.2012.02.014

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  37. Furche F RD (2005) Density functional theory for excited states: equilibrium structure and electronic spectra. In: Olivucci M (ed) Comput photochem. Elsevier, Amsterdam

    Google Scholar 

  38. Hehre WJ, Radom L, Schleyer PV PJ (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  39. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. doi:10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  40. Valeur B, Wiley InterScience (Online Service) (2001) Molecular fluorescence: principles and applications. Wiley-VCH, New York

    Book  Google Scholar 

  41. Wong MW, Frisch MJ, Wiberg KB (1991) Solvent effects. 1. The mediation of electrostatic effects by solvents. J Am Chem Soc 113:4776–4782. doi:10.1021/ja00013a010

    Article  CAS  Google Scholar 

  42. Johnson LE, Dalton LR, Robinson BH (2014) Optimizing calculations of electronic excitations and relative hyperpolarizabilities of electrooptic chromophores. Acc Chem Res 47:3258–3265. doi:10.1021/ar5000727

    Article  CAS  PubMed  Google Scholar 

  43. Isborn CM, Leclercq A, Vila FD et al (2007) Comparison of static first hyperpolarizabilities calculated with various quantum mechanical methods. J Phys Chem A 111:1319–1327. doi:10.1021/jp064096g

    Article  CAS  PubMed  Google Scholar 

  44. Feller D, Davidson ER (1990) basis sets for ab initio molecular orbital calculations and intermolecular interactions. Rev Comput Chem. John Wiley & Sons, Inc., pp 1–43

  45. Lipkowitz KB, Boyd DB (1990) Reviews in computational chemistry, vol-1. VCH Publishers, Inc., New York

    Book  Google Scholar 

  46. Andzelm J, Rinderspacher BC, Rawlett A et al (2009) Performance of DFT methods in the calculation of optical spectra of TCF-chromophores. J Chem Theory Comput 5:2835–2846. doi:10.1021/ct900231r

    Article  CAS  PubMed  Google Scholar 

  47. Jacquemin D, Perpète EA, Scuseria GE et al (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135. doi:10.1021/ct700187z

    Article  CAS  PubMed  Google Scholar 

  48. Hu Q-J, Lu Y-C, Yang C-X, Yan X-P (2016) Synthesis of covalently bonded boron-dipyrromethene-diarylethene for building a stable photosensitizer with photo-controlled reversibility. Chem Commun 52:5470–5473. doi:10.1039/C6CC01864E

    Article  CAS  Google Scholar 

  49. Tanaka K, Chujo Y (2015) Recent progress of optical functional nanomaterials based on organoboron complexes with [beta]-diketonate, ketoiminate and diiminate. NPG Asia Mater 7:e223

    Article  CAS  Google Scholar 

  50. Wong H-L, Wong W-T, Yam VW-W (2012) Photochromic thienylpyridine–bis(alkynyl)borane complexes: toward readily tunable fluorescence dyes and photoswitchable materials. Org Lett 14:1862–1865. doi:10.1021/ol3004595

    Article  CAS  PubMed  Google Scholar 

  51. Schweighöfer F, Dworak L, Braun M et al (2015) Vibrational coherence transfer in an electronically decoupled molecular dyad. Sci Rep 5:9368

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kölmel DK, Hörner A, Castañeda JA et al (2016) Linear and nonlinear optical spectroscopy of fluoroalkylated BODIPY dyes. J Phys Chem C 120:4538–4545. doi:10.1021/acs.jpcc.6b00096

    Article  Google Scholar 

  53. Coe BJ, Fielden J, Foxon SP et al (2010) Diquat derivatives: highly active, two-dimensional nonlinear optical chromophores with potential redox switchability. J Am Chem Soc 132:10498–10512. doi:10.1021/ja103289a

    Article  CAS  PubMed  Google Scholar 

  54. Shawn M, Abernathy, Robert R, SharpView (1997) Spin dynamics calculations of electron and nuclear spin relaxation times in paramagnetic solutions. J Chem Phys 106:9032–9043. doi:10.1063/1.474035

    Article  Google Scholar 

  55. Creutz C, Newton MD, Sutin N (1994) Metal-lingad and metal-metal coupling elements. J Photochem Photobiol A Chem 82:47–59. doi:10.1016/1010-6030(94)02013-2

    Article  CAS  Google Scholar 

  56. Rust M, Lappe J, Cave RJ (2002) Multistate effects in calculations of the electronic coupling element for electron transfer using the generalized mulliken–hush method. J Phys Chem A 106:3930–3940. doi:10.1021/jp0142886

    Article  CAS  Google Scholar 

  57. Newton MD (1997) Medium reorganization and electronic coupling in long-range electron transfer. J Electroanal Chem 438:3–10. doi:10.1016/S0022-0728(96)05025-5

    Article  CAS  Google Scholar 

  58. Momicchioli F, Ponterini G, Vanossi D (2008) First- and second-order polarizabilities of simple merocyanines. An experimental and theoretical reassessment of the two-level model. J Phys Chem A 112:11861–11872. doi:10.1021/jp8080854

    Article  CAS  PubMed  Google Scholar 

  59. Dirk CW, Cheng L-T, Kuzyk MG (1992) A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int J Quantum Chem 43:27–36. doi:10.1002/qua.560430106

    Article  CAS  Google Scholar 

  60. Kuzyk MG, Dirk CW (1990) Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility. Phys Rev A 41:5098–5109

    Article  CAS  PubMed  Google Scholar 

  61. Ma N-N, Sun S-L, Liu C-G et al (2011) Quantum chemical study of redox-switchable second-order nonlinear optical responses of D – π–A system BNbpy and metal Pt(II) chelate complex. J Phys Chem A 115:13564–13572. doi: 10.1021/jp206003n

    Article  CAS  PubMed  Google Scholar 

  62. Akella A, Sochava SL, Hesselink L (1997) Synthesis and characterization of photochromic organic films for holographic recording. Opt Lett 22:919–921. doi: 10.1364/OL.22.000919

    Article  CAS  PubMed  Google Scholar 

  63. Soos ZG, Mukhopadhyay D, Girlando A Painelli A (1997) Handbook of conducting polymers. New York

  64. Chaitanya K, Ju XH, Heron BM, Gabbutt CD (2013) Vibrational spectra and static vibrational contribution to first hyperpolarizability of naphthopyrans—a combined experimental and DFT study. Vib Spectrosc 69:65–83. doi:10.1016/j.vibspec.2013.09.010

    Article  CAS  Google Scholar 

  65. Skwara B, Góra RW, Zaleśny R et al (2011) Electronic structure, bonding, spectra, and linear and nonlinear electric properties of Ti@C28. J Phys Chem A 115:10370–10381. doi: 10.1021/jp206331n

    Article  CAS  PubMed  Google Scholar 

  66. Zaleśny R, Wójcik G, Mossakowska I et al (2009) Static electronic and vibrational first hyperpolarizability of meta-dinitrobenzene as studied by quantum chemical calculations. J Mol Struct THEOCHEM 907:46–50. doi:10.1016/j.theochem.2009.04.011

    Article  Google Scholar 

Download references

Acknowledgements

Author Yogesh Erande gratefully acknowledges the financial support from the UGC, New Delhi, Govt. of India for SRF fellowship, file number F.4-1/2006(BSR)/8-10/2007(BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 238 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erande, Y., Warde, U. & Sekar, N. Investigation of NLO Properties of Fluorescent BORICO Dyes: a Comprehensive Experimental and Theoretical Approach. J Fluoresc 27, 2253–2262 (2017). https://doi.org/10.1007/s10895-017-2167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2167-2

Keywords

Navigation