Skip to main content
Log in

Substitution with a Single Cysteine in the Green Fluorescent Protein-Based Calcium Indicator GCaMP3 Enhances Calcium Sensitivity

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Genetically encoded calcium indicators (GECI) such as GCaMP3 are attracting significant attention as a good option for measuring intracellular calcium levels. Recently, a modified GCaMP3 called dCys-GCaMP3 was developed by replacing two threonine residues with cysteines. dCys-GCaMP3 proved to be a better calcium indicator, but it was not clear how and why the two cysteine residues were able to enhance the protein’s calcium sensitivity. The aim of the present study was to investigate the possible roles of these cysteine residues in dCys-GCaMP3. dCys-GCaMP3 (Thr330Cys;Thr364Cys) exhibited enhanced fluorescence intensity compared to the canonical GCaMP3 in calcium imaging experiments. However, substitution of a single residue at position 330 with cysteine (Thr330Cys) also afforded comparable sensitivity to GCaMP3. In contrast, the other single residue substitution at position 364 with cysteine (Thr364Cys) failed to enhance calcium sensitivity, showing that cysteine at position 330 is essential to improve calcium sensitivity. Thr330Cys substitution in the GCaMP3 or “Cys330-GCaMP3” showed significantly reduced background fluorescence, and the fluorescence intensity was proportional to the amount of DNA used to transfect the cells used in the study. The substitute had to be cysteine, because replacement with other amino acids such as alanine, valine, and aspartate did not improve GCaMP3’s calcium sensitivity. Cys330-GCaMP3 outperformed a synthetic calcium-specific indicator, Fluo-3, in various calcium imaging experiments. Thus, the present study asserts that substituting the threonine at position 330 in GCaMP3 with cysteine is essential to enhance calcium sensitivity, and suggests that Cys330-GCaMP3 can be used as a potent fluorescent calcium indicator to measure intracellular calcium levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kao JP, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 264(14):8179–8184

    CAS  PubMed  Google Scholar 

  2. Pologruto TA, Yasuda R, Svoboda K (2004) Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J Neurosci 24(43):9572–9579. doi:10.1523/JNEUROSCI.2854-04.2004

  3. Horikawa K (2015) Recent progress in the development of genetically encoded Ca2+ indicators. J Med Invest 62(1–2):24–28. doi:10.2152/jmi.62.24

    Article  PubMed  Google Scholar 

  4. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141. doi:10.1038/84397

    Article  CAS  PubMed  Google Scholar 

  5. Akerboom J, Rivera JD, Guilbe MM, Malave EC, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284(10):6455–6464. doi:10.1074/jbc.M807657200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Y, Song X, Ye S, Miao L, Zhu Y, Zhang RG, Ji G (2013) Structural insight into enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement. Protein Cell 4(4):299–309. doi:10.1007/s13238-013-2103-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840. doi:10.1523/JNEUROSCI.2601-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McKinney MC, Kulesa PM (2011) In vivo calcium dynamics during neural crest cell migration and patterning using GCaMP3. Dev Biol 358(2):309–317. doi:10.1016/j.ydbio.2011.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881. doi:10.1038/nmeth.1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Helassa N, Zhang XH, Conte I, Scaringi J, Esposito E, Bradley J, Carter T, Ogden D, Morad M, Torok K (2015) Fast-response calmodulin-based fluorescent indicators reveal rapid intracellular calcium dynamics. Sci Rep 5:15978. doi:10.1038/srep15978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai B, Chen X, Liu F, Li J, Gu L, Liu JR, Liu J (2014) A cell-based functional assay using a green fluorescent protein-based calcium indicator dCys-GCaMP. Assay Drug Dev Technol 12(6):342–351. doi:10.1089/adt.2014.584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Galpha q/11 pathway. Proc Natl Acad Sci U S A 99(23):14740–14745. doi:10.1073/pnas.192565799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen MW, Urbauer RJ, Zaidi A, Williams TD, Urbauer JL, Johnson CK (2004) Fluorescence labeling, purification, and immobilization of a double cysteine mutant calmodulin fusion protein for single-molecule experiments. Anal Biochem 325(2):273–284

    Article  CAS  PubMed  Google Scholar 

  14. Kawasaki H, Kretsinger RH (1995) Calcium-binding proteins 1: EF-hands. Protein Profile 2(4):297–490

    CAS  PubMed  Google Scholar 

  15. Jiang J, Zhou Y, Zou J, Chen Y, Patel P, Yang JJ, Balog EM (2010) Site-specific modification of calmodulin Ca2+ affinity tunes the skeletal muscle ryanodine receptor activation profile. Biochem J 432(1):89–99. doi:10.1042/BJ20100505

    Article  CAS  PubMed  Google Scholar 

  16. Yang JJ, Gawthrop A, Ye Y (2003) Obtaining site-specific calcium-binding affinities of calmodulin. Protein Pept Lett 10(4):331–345

    Article  CAS  PubMed  Google Scholar 

  17. Morgan RO, Martin-Almedina S, Garcia M, Jhoncon-Kooyip J, Fernandez MP (2006) Deciphering function and mechanism of calcium-binding proteins from their evolutionary imprints. Biochim Biophys Acta 1763(11):1238–1249. doi:10.1016/j.bbamcr.2006.09.028

    Article  CAS  PubMed  Google Scholar 

  18. Martin SR, Maune JF, Beckingham K, Bayley PM (1992) Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin. Eur J Biochem 205(3):1107–1114

    Article  CAS  PubMed  Google Scholar 

  19. Halling DB, Liebeskind BJ, Hall AW, Aldrich RW (2016) Conserved properties of individual Ca2+-binding sites in calmodulin. Proc Natl Acad Sci U S A 113(9):E1216–E1225. doi:10.1073/pnas.1600385113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Y, Frey TK, Yang JJ (2009) Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46(1):1–17. doi:10.1016/j.ceca.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nelson DL, Cox MM (2004) Lehninger principles of biochemistry, 4th edn. W.H. Freeman, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Sik Shim.

Additional information

Tae Joon Kim and Ji Young Yoo contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.J., Yoo, J.Y. & Shim, WS. Substitution with a Single Cysteine in the Green Fluorescent Protein-Based Calcium Indicator GCaMP3 Enhances Calcium Sensitivity. J Fluoresc 27, 2187–2193 (2017). https://doi.org/10.1007/s10895-017-2159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2159-2

Keywords

Navigation