Skip to main content
Log in

DNAzyme Based Amplified Biosensor on Ultrasensitive Fluorescence Detection of Pb (II) Ions from Aqueous System

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A label -free DNAzyme amplified biosensor is found to be highly selective and sensitive towards fluorescent detection of Pb2+ ions in aqueous media. The DNAzyme complex has designed by the hybridization of the enzyme and substrate strand. In the presence of Pb2+, the DNAzyme activated and cleaved the substrate strand of RNA site (rA) into two oligonucleotide fragments. Further, the free fragment was hybridized with a complementary strand on the surface of MBs. After magnetic separation, SYBER Green I was added and readily intercalate with the dsDNA to gives a bright fluorescence signal with intensity directly proportional to the concentration of Pb2+ions. A detection limit of 5 nM in Pb2+ the detection range 0 to 500 nM was obtained. This label- free fluorescent biosensor has been successfully applied to the determination of environmental water samples. Then results open up the possibility for real-time quantitative detection of Pb2+ with convenient potential applications in the biological and environmental field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Panich S, Wilson KA, Nuttall P, Wood CK, Albrecht T, Edel EB (2004) Label–free Pb(II) whispering gallery mode sensing using self-assembled glutathione-modified gold nanoparticles on an optical micro cavity. Anal Chem 86(23):6299–6306

    Google Scholar 

  2. Nolan EM, Lippard SJ (2009) Small – molecule fluorescent sensors for investigating zinc metallonuerochemistry. Acc Chem Res 42(1):193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiang Y, Tong A, Lu Y (2009) Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity and tunable dynamic range. J Am Chem Soc 131(42):15352–15357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiang Y, Lu Y (2014) DNA as sensors and imaging agents for metal ions. Inorg Chem 53:1925–1942

    Article  CAS  PubMed  Google Scholar 

  5. Li F, Yang L, Chen M, Li P, Tang B (2012) A selective amperometric sensing platform for lead based on target-induced strand release. Analyst 138:461–466

    Article  Google Scholar 

  6. He QW, Miller EW, Wong AP, Chang CJ (2006) A sensitive fluorescent sensor for detecting lead in living cells. J Am Chem Soc 128:9316–9317

    Article  CAS  PubMed  Google Scholar 

  7. Schneider E, Clark DS (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron 39:1–13

    Article  CAS  PubMed  Google Scholar 

  8. Godwin HA (2001) The biological chemistry of Lead. Curr Opin Chem Biol 5:223–227

    Article  CAS  PubMed  Google Scholar 

  9. Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  CAS  PubMed  Google Scholar 

  10. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: review. Environ Toxicol Chem 18(1):89–108

    Article  CAS  Google Scholar 

  11. BIS (1981) Tolerance limits for industrial effluents prescribed by bureau of indian standards, IS 2490(Part I) New Delhi

  12. Yang X, Xu J, Tang X, Liu H, Tian D (2010) A novel electrochemical DNAzyme sensor for the amplified detection of Pb2+ ions. Chem Commun 46:3107–3109

    Article  CAS  Google Scholar 

  13. Wuertz S, Bishop S, Wilderer PA (2003) Biofilms in waste-water treatment: an interdisciplinary approach. IWA, London

  14. Teixerira CR, Andradea TFN, Oliveirac FM, Corazzac MZ, Azevedo LFM, Segatellid MG (2011) Synthesis and application of imprinted polyvinylimidazole-silica hybride copolymer for Pb2+ determination by flow-injection thermospray flame furnace atomic absorption spectrometry. Anal Chim Acta 703:145–151

    Article  Google Scholar 

  15. Silva MVL, Frescura VL, Curtius A (2000) Determination of trace elements in water samples by ultrasonic nebulization inductively coupled plasma mass spectrometry after cloud point extraction. Spectrochimi A J Acta Part B 55:803–813

    Article  Google Scholar 

  16. Elfering H, Anderson JT, Poll KG (1998) Determination of organic soils and waters by hydride generation inductively coupled plasma atomic emission spectrometry. Analyst 123:669–674

    Article  CAS  Google Scholar 

  17. Wu J, Boyle EA (1997) Low blank pre-concentration technique for the determination of lead, copper and cadmium in small-volume seawater samples by isotope dilution ICPMS. Anal Chem 69:2464–2470

    Article  CAS  PubMed  Google Scholar 

  18. Chan MS, Huang SD (2000) Direct determination of copper in seawater using transversely heated graphite furnace atomic adsorption spectrometer with Zeeman-effect background corrector. Talanta 51:373–380

    Article  CAS  PubMed  Google Scholar 

  19. Santosa SJ, Tanaka S, Yamanaka K (1997) Sequential determination of trace metals in sea water by inductively coupled plasma mass spectrometry after electrochemical vaporization of their dithiocarbamate complexes in methyl isobutyl ketone. Environ Monit Assess 44:515–528

    Article  CAS  Google Scholar 

  20. Rea RW, Keeler GJ (1998) Microwave digestion and analysis of foliage for total mercury by cold vapour atomic fluorescence spectroscopy. Biogeochemistry 40:115–123

    Article  CAS  Google Scholar 

  21. Al-Assaf KH, Tyson JF, Uden PC (2009) Determination of four arsenic species in soil by sequential extraction and high performance liquid chromatography with post-column hydride generation and inductively coupled plasma optical emission spectrometry detection. J Anal Atom Spectrom 24:379–384

    Article  Google Scholar 

  22. Miao X, Ling L, Shuai (2011) Ultraaensitive detection of lead(II) with DNAzyme and gold nanoparticles probes by using a dynamic light scattering technique. Chem Commun 47:4192–4194

    Article  CAS  Google Scholar 

  23. Tang S, Tong P, Li H, Tang J, Zhang L (2013) A novel label-free electrochemical sensor for Hg2+ based on the catalytic formation of metal nanoparticle. Biosens Bioelectron 42:608–611

    Article  CAS  PubMed  Google Scholar 

  24. Xu H, Xu P, Gao S, Zhang L, Fan C, Zuo X (2013) Highly sensitive recognition of Pb2+ using Pb2+ triggered exonuclease aided DNA recycling. Biosens Bioelectron 43:520–523

    Article  Google Scholar 

  25. Seeling G, Yurke B, Winfree E (2006) Catalyzed relaxation of a metastable DNA fuel. J Am Chem Soc 128:12211–12220

    Article  Google Scholar 

  26. Li J, Cao Z, Lu Y (2000) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998

    Article  Google Scholar 

  27. Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122:10466–10467

    Article  CAS  Google Scholar 

  28. Liu J, Lu Y (2012) Metal ion dependent DNAzymes and their applications as biosensors. Met Ions Life Sci 10:217

    Article  CAS  Google Scholar 

  29. Zhu, X, Lin Z, Chen L, Qiu B, Chen G (2009) A sensitive and specific electro-chemiluminescnt sensor for lead based DNAzyme. Chem Commun 6050–6052

  30. Gao A, Tang CX, He XW, Yin XB (2013) Electrochemilumiscent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)3 2+ intercalation and lead recognition. Analyst 138:263

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Cai Z, Wu G, Rong M, Jiang Y, Yang CJ, Chen X (2014) A novel signal-on DNAzyme –based electrochemiluminescencesensor. Sensors Actuators B 191: 60–66

    Article  CAS  Google Scholar 

  32. Wang Y, Irudayaraj J (2011) A SERS DNAzyme biosensor for lead ion detection. Chem Commun 47:4394–4396

    Article  CAS  Google Scholar 

  33. Wang FL, Wu Z, Lu YX, Wang J, Jiang JH, Yu RQ (2010) A label free DNAzyme sensor for lead (II) detection by quantitative polymerase chain reaction. Anal. Biochem 405: 168–173

    Article  CAS  PubMed  Google Scholar 

  34. Zhang LB, Han BY, Li T, Wang EK (2011) Label-free DNAzyme-based fluorescing molecular switch for sensitive and selective detection of lead. Chem Commun 47:3099–3101

    Article  CAS  Google Scholar 

  35. Wang J, Liu B (2008) Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury –specific DNA and Syber Green I. Chem Commun 4759–4761

  36. Chen YY, Chang HT, Shiang YC, Hung YL (2009) Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal Chem 81:9433–9439

    Article  CAS  PubMed  Google Scholar 

  37. Liu JW, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126:12298–12305

    Article  CAS  PubMed  Google Scholar 

  38. Chen G, Chen J, Wu W, Fang F, Chen L, Liu Q, Wang L, Xing X, Zeng L (2013) A enzyme-free and label-free assay for copper(II) ion detection based on self-assembled DNA concatamers and Syber Green I. Analyst 138:4737–4740

    Article  PubMed  Google Scholar 

  39. Fu T, Zhao XH, Bai HR, Zhao ZL, Hu R, Kong RM, Zhang XB, Tan W, Yu RQ (2013) A superquenched DNAzyme-perylene complex: a convenient, universal and low-background strategy for fluorescence catalytic biosensors. Chem Commun 49:6644

    Article  CAS  Google Scholar 

  40. Li CL, Liu KT, Lin YW, Chang HT (2011) Fluorescence detection of lead(II) ions through their induced catalytic activity of DNAzymes. Anal Chem 83:225–230

    Article  CAS  PubMed  Google Scholar 

  41. Nagaraj N, Liu J, Sterling S, Wu J, Lu Y (2009) DNAzyme catalytic beacon sensors that resist temperature-dependent variations. Chem Commun 27:4103–4105

    Article  Google Scholar 

  42. Liu J, Lu Y (2003) Improving fluorescent DNAzyme biosensors by combining inter - and intramolecular quenchers. Anal Chem 75:66–6672

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Panneerselvam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, A., Panneerselvam, P., Radhakrishnan, K. et al. DNAzyme Based Amplified Biosensor on Ultrasensitive Fluorescence Detection of Pb (II) Ions from Aqueous System. J Fluoresc 27, 2101–2109 (2017). https://doi.org/10.1007/s10895-017-2149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2149-4

Keywords

Navigation