Skip to main content
Log in

Luminescent Benzothiazole-Based Fluorophore of Anisidine Scaffoldings: a “Turn-On” Fluorescent Probe for Al3+ and Hg2+ Ions

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new anisidine possessing benzothiaozle-based chemosensor (1) has been designed and synthesized. The chemosensor 1 was designed to provide hard base environment for ratiometric detection of comparatively less studied Al3+ ions. In CH3CN, the fluorescence spectra of chemosensor 1 red shifted from 368 to 430 nm with addition of Al3+ and Hg2+ ions; while Cu2+ ions caused quenching of emission intensity of 1. These differential changes observed with Al3+ and Cu2+ ions addition enabled chemosensor 1 to construct “NOR” and “TRANSFER” logic gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Kawano T, Kadono T, Furuichi T, Muto S, Lapeyrie F (2003) Aluminium-induced distortion in calcium signaling involving oxidative burst and channel regulation in tobacco BY-2 cells. Biochem Biophys Res Commun 308:35–42

    Article  CAS  PubMed  Google Scholar 

  2. Fasman GD (1996) Aluminium and Alzheimer’s disease: model studies. Coord Chem Rev 149:125–165

    Article  CAS  Google Scholar 

  3. Sont MG, White SM, Flamm WG, Regul GA (2001) Safety evaluation of dietary aluminium. Toxicol Pharmacol 33: 66–79

    Google Scholar 

  4. Yokel RA (2000) The toxicology of aluminumin the brain: a review. Neurotoxicology 21:813–828

    CAS  PubMed  Google Scholar 

  5. Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam SW, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminium ions and application to bioimaging. Inorg Chem 51:3597–3602

    Article  CAS  PubMed  Google Scholar 

  6. Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. Acc Chem Res 42:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Z, Wu D, Guo X, Qian X, Lu Z, Zu Q, Yang Y, Duan L, He Y, Feng Z (2005) Visible study of mercuric ion and its conjugate in living cells of mammals and plants. Chem Res Toxicol 18:1814–1820

    Article  CAS  PubMed  Google Scholar 

  8. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  9. Jung HS, Park M, Han DY, Kim E, Lee C, Ham S, Kim JS (2009) Cu2+ ion-induced self-assembly pyrenylquinoline with a pyrenyl excimer formation. Org Lett 11:3378–3381

    Article  CAS  PubMed  Google Scholar 

  10. Goswami S, Sen D, Das NK (2010) A new highly selective, ratiometric and colorimetric sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org Lett 12:856–859

    Article  CAS  PubMed  Google Scholar 

  11. Thakur A, Sardar S, Ghosh S (2011) A highly selective redox, chromogenic, and fluorescent chemosensor for Hg2+ in aqueous solution based on ferrocene-glycine bioconjugates. Inorg Chem 50:7066–7073

    Article  CAS  PubMed  Google Scholar 

  12. Jang YK, Nam UC, Kwon HL, Hwang IH, Kim C (2013) A selective colorimetric and fluorescent chemosensor based-on napthol for detection of Al3+ and Cu2+. Dyes pigm 99:6–13

    Article  CAS  Google Scholar 

  13. Park HM, Oh BN, Kim JH, Qiong W, Hwang IH, Jung KD, Kim C, Kim J (2011) Fluorescent chemosensor based-on napthol-quinoline for selective detection of aluminium ions. Tetrahedron Lett 52:5581–5584

    Article  CAS  Google Scholar 

  14. Ren JL, Zhang J, Luo JQ, Pei XK, Jiang ZX (2001) Improved fluorimetric determination of dissolved aluminium by micelle-enhanced lumogallion complex in natural waters. Analyst 126:698–702

    Article  CAS  PubMed  Google Scholar 

  15. Wang YW, Yu MX, Yu YH, Bai ZP, Shen Z, Li FY, You XZ (2009) A colorimetric and fluorescent turn-on chemosensor for Al3+ and its application in bioimaging. Tetrahedron Lett 50:6169–6172

    Article  CAS  Google Scholar 

  16. Kim SH, Choi HS, Kim J, Lee SJ, Quang DT, Kim JS (2010) Novel optical/electrochemical selective 1,2,3-triazole ring-appended chemosensor for the Al3+ ion. Org Lett 12:560–563

    Article  CAS  PubMed  Google Scholar 

  17. Sun X, Wang YW, Peng Y (2012) A selective and ratiometric bifunctional fluorescent probe for Al3+ ion and proton. Org Lett 14:3420–3423

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Lin Z, Liao H, Duan C, Meng Q (2006) A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline. Inorg Chem Commun 9:966–968

    Article  CAS  Google Scholar 

  19. Upadhyay KK, Kumar A (2010) Pyrimidine based highly sensitive fluorescent receptor for Al3+ showing dual signaling mechanism. Org Biomol Chem 8:4892–4897

    Article  CAS  PubMed  Google Scholar 

  20. Schmittel M, Lin HW (2007) Quadrupole-channel sensing: a molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis. Angew Chem Int Ed 46:893–896

    Article  CAS  Google Scholar 

  21. Mikami D, Ohki T, Yamaji K, Ishihara S, Citterio D, Hagiwara M, Suzuki K (2004) Quantification of ternary mixtures of heavy metal cations from metallochromic absorbance spectra using neural network inversion. Anal Chem 76:5726–5733

    Article  CAS  PubMed  Google Scholar 

  22. Mokhir A, Kiel A, Herten D, Kraemer R (2005) Fluorescent sensor for Cu2+ with a tunable emission wavelength. Inorg Chem 44:5661–5666

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Campbell RE, Ting AY, Tisen RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  CAS  PubMed  Google Scholar 

  24. Kaur N, Dhaka G, Singh J (2015) Hg2+-induced deprotonation of an anthracene-based chemosensor: set-reset flip-flop at the molecular level using Hg2+ and I ions. New J Chem 39:6125–6129

    Article  CAS  Google Scholar 

  25. Singh N, Mulrooney RC, Kaur N, Callan JF (2008) A nanoparticle based chromogenic chemosensor for the simultaneous detection of multiple analytes. Chem Commun 4900–4902. https://doi.org/10.1039/B813423E

  26. Szacilowski K (2008) Thinking outside the silicon box: molecular AND logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. Chem Rev 108:3481–3548

    Article  CAS  PubMed  Google Scholar 

  27. de Silva AP, McClenaghan ND, McCoy CP (2001) Molecular level electronics, imaging and information, energy and environment. In: Balzani V (ed) Electron transfer in chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  28. Balzani V, Venturi M, Credi A (2003) Molecular devices and machines. In: A journey into the nanoworld. Wiley-VCH, Wienheim

  29. Kaur N, Kumar S (2011) Insights into the photophysics, protonation and Cu2+ ion coordination behavior anthrcene-9,10-dione-based chemosensors. Supramol Chem 11: 768–776

    Article  Google Scholar 

  30. Mitchell RJ (1995) Microprocessor systems: an introduction. Macmillan, London

    Book  Google Scholar 

  31. Bojinov V, Georgiev N (2011) Molecular sensors and molecular logic gates. J Univ Chem Tech Metallurgy 46:3–26

    CAS  Google Scholar 

  32. Mukhopadhyay C, Datta A (2007) A green method for the synthesis of 2-arylbenzothiazoles. Heterocycles 71:1837–1842

    Article  CAS  Google Scholar 

  33. Jang DO, Lee DY, Singh N (2010) A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+. Tetrahedron Lett 51:1103–1106

    Article  Google Scholar 

  34. Connors KA (1987) Binding constants. Wiley, New York

    Google Scholar 

  35. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  36. Winefordner JD, Long GL (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55: 712A-724A

    Google Scholar 

  37. Zhao BX, Zhang TT, Chen XP, Liu JT, Zhang LZ, Chu JM, Su L (2014) A high sensitive fluorescence turn-on probe for imaging Zn2+ in aqueous solution and living cells. RSC Adv 4:16973–16978

    Article  Google Scholar 

  38. Singh P, Kumar S (2006) Photonic logic gates based on metal ion and proton induced multiple outputs in 5-chloro-8-hydroxyquinoline based tetrapod. New J Chem 30:1553–1556

    Article  CAS  Google Scholar 

  39. Baytekin HT, Akkaya EU (2000) A molecular NAND gate based on Watson-Crick base pairing. Org Lett 2:1725–1727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to SAIF, Panjab University Chandigarh for recording the NMR and Mass spectra and are grateful to DST (grant no. SR/FT/CS-36/2011), UGC (grant no. AB2/12/3115) and DST PURSE-II (Grant no. 48/RPC) for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 713 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaka, G., Kaur, N. & Singh, J. Luminescent Benzothiazole-Based Fluorophore of Anisidine Scaffoldings: a “Turn-On” Fluorescent Probe for Al3+ and Hg2+ Ions. J Fluoresc 27, 1943–1948 (2017). https://doi.org/10.1007/s10895-017-2148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2148-5

Keywords

Navigation