Skip to main content
Log in

An Efficient Fluorescence “Turn-On” Chemosensor Comprising of Coumarin and Rhodamine Moieties for Al3+ and Hg2+

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A potent fluorescence ‘turn-on’ receptor (HL) based on rhodamine and coumarin moieties for the detection of Hg2+ and Al3+ is synthesized by condensation of rhodamine 6G hydrazide and 4-hydroxy-3-acetylcoumarin. In presence of Al3+ and/or Hg2+ the receptor (HL) exhibits deep pink colouration and a sharp band at 528 nm is appeared in UV–vis titration. Upon gradual addition of Al3+ and/or Hg2+ to the solution of HL significant enhancement of fluorescence intensity is observed at 564 nm in MeCN:H2O (1:5, v/v) medium. The receptor is strongly bound to Al3+ and/or Hg2+ and the association constants (Ka) are found to be 1.74 × 104 and 1.04 × 104 M− 1 for Al3+ and Hg2+ respectively.

Graphical Abstract

A potent fluorescence ‘turn-on’ receptor (HL) based on rhodamine and coumarin moieties for the detection of Hg2+ and Al3+ is synthesized and characterized. In presence of Al3+ and/or Hg2+ the receptor (HL) exhibits deep pink colouration and significant enhancement of fluorescence intensity is observed at 564 nm in MeCN:H2O (1:5, v/v) medium. The receptor is strongly bound to Al3+ and/or Hg2+ and the association constants (Ka) are found to be 1.74 × 104 and 1.04 × 104 M− 1 for Al3+ and Hg2+ respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grandjean P, Weihe P, White RF, Debes F (1998) Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ Res 77:165–172

  2. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

  3. Zhang X, Xiao Y, Qian X (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed 47:8025–8029

  4. Bhardwaj VK, Sharma H, Kaur N, Singh N (2013) Fluorescent organic nanoparticles (FONs) of rhodamine-appended dipodal derivative: highly sensitive fluorescent sensor for the detection of Hg2+in aqueous media. New J Chem 37:4192–4198

  5. Wang Y, Yang F, Yang XR (2010) Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25:1994–1998

  6. Environmental Protection Agency (2001) Mercury update: impact on fish advisories; EPA fact sheet EPA-823-F-01-001. Office of Water, Washington, DC

    Google Scholar 

  7. Jiao Y, Zhang L, Zhou P (2016) A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection. Talanta 150:14–19

  8. Hamdy MK, Noyes OR (1975) Formation of methyl mercury by bacteria. Appl Microbiol 30:424–432

  9. Sont MG, White SM, Flamm WG, Burdock GA (2001) Safety evaluation of dietary aluminum. Regul Toxicol Pharmacol 33:66–79

  10. Exley J (2013) Human exposure to aluminium. Environ Sci: Process Impacts 15:1807–1816

    CAS  Google Scholar 

  11. Sarkar D, Pramanik A, Biswas S, Karmakar P, Mondal TK (2014) Al3+ selective coumarin based reversible chemosensor: application in living cell imaging and as integrated molecular logic gate. RSC Adv 4:30666–30672

    Article  CAS  Google Scholar 

  12. Walton JR (2006) Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicology 27:385–394

  13. Woodson GC (1998) An interesting case of osteomalacia due to antacid use associated with stainable bone aluminum in a patient with normal renal function. Bone 22:695–598

  14. Darbre PD (2005) Aluminium, antiperspirants and breast cancer. J Inorg Biochem 99:1912–1919

  15. Fasman GD (1996) Aluminum and Alzheimer’s disease: model studies. Coord Chem Rev 149:125–165

  16. Darbre PD (2016) Aluminium and the human breast. Morphologie 100:65–74

  17. Darbre PD, Mannello F, Exley C (2013) Aluminium and breast cancer: sources of exposure, tissue measurements and mechanisms of toxicological actions on breast biology. J Inorg Biochem 128:257–261

    Article  CAS  PubMed  Google Scholar 

  18. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  19. Berthon G (2002) Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity. Coord Chem Rev 228:319–341

    Article  CAS  Google Scholar 

  20. Krejpcio Z, Wojciak RW (2002) The influence of AI3+ ions on pepsin and trypsin activity in vitro. Pol J Environ Stud 11:251–254

    CAS  Google Scholar 

  21. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  CAS  Google Scholar 

  22. Yoon S, Miller EW, He Q, Do PH, Chang CJ (2007) A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew Chem 119:6778–6781

    Article  Google Scholar 

  23. Yoon S, Albers AE, Wong AP, Chang CJ (2005) Screening mercury levels in fish with a selective fluorescent chemosensor. J Am Chem Soc 127:16030–16031

    Article  CAS  PubMed  Google Scholar 

  24. Quang DT, Kim JS (2010) Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110:6280–6301

    Article  CAS  Google Scholar 

  25. Cao L, Jia C, Huang Y, Zhang Q, Wang N, Xue Y, Du D (2014) A highly selective fluorescence turn-on detection of Al3+ and Ca2+ based on a coumarin-modified rhodamine derivative. Tetrahedron Lett 55:4062–4066

    Article  CAS  Google Scholar 

  26. He G, Zhang X, He C, Zhao X, Duan C (2010) Ratiometric fluorescence chemosensors for copper(II) and mercury(II) based on FRET systems. Tetrahedron 66:9762–9768

    Article  CAS  Google Scholar 

  27. Adhikari S, Mandal S, Ghosh A, Guria S, Das D (2016) Ratiometric sensing of Fe3+ through PET-CHEF-FRET processes: live cell imaging, speciation and DFT studies. Sensors Actuators B 234:222–230

  28. Park J, Angupillai S, Son YA (2015) A highly sensitive fluorescent probe for selective detection of Al3+ cation by switching the solvent from aprotic to protic environment. Mol Cryst Liq Cryst 662:103–113

  29. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D. 01. Gaussian Inc., Wallingford

    Google Scholar 

  33. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  34. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  35. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  36. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

  37. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  38. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  39. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  40. Ko SK, Yang YK, Tae J, Shin I (2006) In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J Am Chem Soc 128:14150–14155

    Article  CAS  PubMed  Google Scholar 

  41. Tobita S, Yamamoto M, Kurahayashi N, Tsukagoshi R, Nakamura Y, Shizuka H (1998) Effects of electronic structures on the excited-state intramolecular proton transfer of 1-hydroxy-2-acetonaphthone and related compounds. J Phys Chem A 102:5206–5214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. T. K. Mondal thanks to CSIR (No. 01(2831)/15/EMR-II) and Science and Engineering Research Board (SERB)(YSS/2015/001533), New Delhi, India for financial supports. S. Gharami and L. Patra are thankful to UGC, New Delhi, India for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Mondal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3051 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharyya, S., Gharami, S., Patra, L. et al. An Efficient Fluorescence “Turn-On” Chemosensor Comprising of Coumarin and Rhodamine Moieties for Al3+ and Hg2+ . J Fluoresc 27, 2051–2057 (2017). https://doi.org/10.1007/s10895-017-2144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2144-9

Keywords

Navigation