Skip to main content
Log in

A Method for In Vitro Measurement of Oxidized Low-Density Lipoprotein in Blood, Using Its Antibody, Fluorescence-Labeled Heptapeptide and Polyethylene Glycol

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two oxidized forms of low-density lipoprotein (LDL), oxidized (Ox-LDL) and minimally modified (MM-LDL), and the immune complexes (LDL-ICs) that they form with their corresponding antibodies, play a major role in the pathogenesis of atherosclerosis. Recently, we reported that the heptapeptide KP6 (Lys-Trp-Tyr-Lys-Asp-Gly-Asp) coupled through its ε-amino group present on the N-terminal Lys to fluorescein isothiocyanate (FITC)— (FITC)KP6— binds specifically to Ox-LDL and MM-LDL, but not to native LDL. Here, to develop a novel method for measuring the levels of oxidatively modified LDL in blood, using (FITC)KP6, we analyzed the latter’s binding with MM-LDL-IC and Ox-LDL-IC. Polyacrylamide gel electrophoresis analysis revealed that (FITC)KP6 could efficiently and specifically bind to polyethylene glycol (PEG)-precipitated MM-LDL-IC and Ox-LDL-IC in a dose-dependent manner with high sensitivity in plasma and serum. Our results indicate that the above method for measuring the levels of PEG-precipitated, oxidatively modified LDL-ICs, formed by the addition of anti-Ox-LDL antibody to blood, using (FITC)KP6, can aid the diagnosis of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ross R (1999) Mechanism of disease: atherosclerosis—an inflammatory disease. N Engl Med 340:115–126

    Article  CAS  Google Scholar 

  2. Caplan BA, Schwartz CJ (1973) Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis 17:60–73

    Article  Google Scholar 

  3. Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J (1997) Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130:17–27

    Article  CAS  PubMed  Google Scholar 

  4. Sternberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modification of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320:915–924

    Article  Google Scholar 

  5. Witztum JL (1993) Role of oxidized low-density lipoprotein in atherogenesis. Br Heart J 69:12–18

    Article  Google Scholar 

  6. Rosenfeld ME (1991) Oxidized LDL affects multiple atherogenic cellular responses. Circulation 83:2137–2140

    Article  CAS  PubMed  Google Scholar 

  7. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654

    Article  CAS  PubMed  Google Scholar 

  8. Aikawa M, Sugiyama S, Hill C, Voglic S, Rabkin E, Fukumoto Y, Schoen F, Witztum J, Libby P (2002) Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation 160:1390–1396

    Article  Google Scholar 

  9. Sigala F, Kotsinas A, Savari P, Filis K, Markantonis S, Iliodromitis EK, Gorgoulis VG, Andreadou I (2010) Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J Vasc Surg 52:704–713

    Article  PubMed  Google Scholar 

  10. Sevanian A, Bittolo-Bon G, Cazzolato G, Hodis H, Hwang J, Zamburlini A, Maiorino M, Uysini F (1997) LDL is a lipid hydroperoxide-enriched circulating lipoprotein. J Lipid Res 38:419–428

    CAS  PubMed  Google Scholar 

  11. Itabe H, Mori M, Fujimoto Y, Higashi Y, Takano T (2003) Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem 134:459–465

    Article  CAS  PubMed  Google Scholar 

  12. Markakis KP, Koropouli MK, Grammenou-Savvoglou S, van Winden EC, Dimitriou AA, Demopoulos CA, Tselepis AD, Kotsifaki EE (2010) Implication of lipoprotein associated phospholipase A2 activity in oxLDL uptake by macrophages. J Lipid Res 51:2191–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hodis HN, Kramsch DM, Avogaro P, Bittolo-Bon G, Cazzolato G, Hwang J, Peterson H, Sevanian A (1994) Biochemical and cytotoxic characteristics of an in vivo circulating oxizied low density lipoprotein (LDL-). J Lipid Res 35:669–677

    CAS  PubMed  Google Scholar 

  14. Cazzolato G, Avogaro P, Bittolo-Bon G (1991) Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC. Free Radic Biol Med 11:247–253

    Article  CAS  PubMed  Google Scholar 

  15. Itabe H, Obama T, Kato R (2011) The dynamics of oxidized LDL during atherogenesis. J Lipids 2011:418313

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lopes-Virella MF, Mironova M, Virella G (1997) LDL-containing immune complexes and atherosclerosis in diabetes. Diabetes Rev 5:410–424

    Google Scholar 

  17. Sato A, Yamanaka H, Oe K, Yamazaki Y, Ebina K (2014) Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity. Chem Biol Drug Des 84:443–449

    Article  CAS  PubMed  Google Scholar 

  18. Sato A, Yamanaka H, Oe K, Yokoyama I, Yamazaki Y, Ebina K (2015) Highly stable, fluorescence-labeled heptapeptides substituted with a D-amino acid for the specific detection of oxidized low-density lipoprotein in plasma. Chem Biol Drug Des 85:348–355

    Article  CAS  PubMed  Google Scholar 

  19. Sato A, Ueda C, Kimura R, Kobayashi C, Yamazaki Y, Ebina K (2016) A fluorescence-labeled heptapeptide, (FITC)KP6, as an efficient probe for the specific detection of oxidized and minimally modified low-density lipoprotein. J Fluoresc 26:1141–1150

    Article  CAS  PubMed  Google Scholar 

  20. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, Collen D, Muls E, van de Werf F (2001) Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol 21:844–848

    Article  CAS  PubMed  Google Scholar 

  21. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  23. Mironova MA, Klein R, Virella GT, Lopes-Virella MF (2000) Anti-modified LDL antibodies, LDL-containing immune complexes, and susceptibility of LDL to in vitro oxidation in patients with type 2 diabetes. Diabetes 49:1033–1041

    Article  CAS  PubMed  Google Scholar 

  24. Virella G, Thorpe SR, Alderson NL, Stephan EM, Atchley D, Wagner F, Lopes-Virella MF, the DCCT/EDIC Research Group (2003) Autoimmune response to advanced glycosylation end-products of human LDL. J Lipid Res 44:487–493

    Article  CAS  PubMed  Google Scholar 

  25. Esposti MD, Cristea IM, Gaskell SJ, Nakao Y, Dive C (2003) Proapoptopic bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ 10:1300–1309

    Article  CAS  PubMed  Google Scholar 

  26. Manara A, Lindsay J, Marchioretto M, Astegno A, Gilmore AP, Esposti MD, Crimi M (2009) Bid binding to negatively charged phospholipids may not be required for its pro-apoptotic activity in vivo. Biochim Biophys Acta 1791:997–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead Cell 23:503–516

    Google Scholar 

  28. Sobenin IA, Salonen JT, Zhelankin AV, Melnichenko AA, Kaikkonen J, Bobryshev YV, Orekhov AN (2014) Low density lipoprotein-containing circulating immune complexes: role in atherosclerosis and diagnostic value. BioMed res Int 205697:7 pages

  29. Orekhov AN, Bobryshev YV, Sobenin IA, Melnichenko AA, Chistiakov DA (2014) Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int J Mol Sci 15:12807–12841

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tertov VV, Orekhov AN, Kacharava AG, Sobenin IA, Perova NV, Smirnov VN (1990) Low density lipoprotein. Exp Mol Pathol 52:300–308

    Article  CAS  PubMed  Google Scholar 

  31. Tertov VV, Orekhov AN, Sayadyan KS, Serebrennikov SG, Kacharava AG, Lyakishev AA, Smirnov VN (1990) Correlation between cholesterol content in circulating immune complexes and atherogenic properties of CHD petients’ serum manifested in cell culture. Atherosclerosis 81:183–189

    Article  CAS  PubMed  Google Scholar 

  32. Orekhov AN, Kalenich OS, Tertov VV, Novikov ID (1991) Lipoprotein immune complexes as markers of atherosclerosis. Int J Tissue React 13:233–236

    CAS  PubMed  Google Scholar 

  33. Lopes-Virella MF, Virella G (2013) Pathogenic role of modified LDL antibodies and immune complexes in atherosclerosis. J Atheroscler Thromb 20:743–754

    Article  CAS  PubMed  Google Scholar 

  34. Itabe H, Takeshima H, Iwasaki H, Kimura J, Yoshida Y, Imanaka T, Takano T (1994) A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholine and polypeptides J Biol Chem 269:15274–15279

  35. Itabe H, Yamamoto H, Imanaka T, Shimamura K, Uchiyama H, Kimura J, Sanaka T, Hata Y, Takano T (1996) Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J Lipid Res 37:45–53

    CAS  PubMed  Google Scholar 

  36. Virella G, Thorpe SR, Alderson NL, Derrick MB, Chassereau C, Rhett JM, Lopes-Virrella MF (2004) Definition of the immunogenic forms of modified human LDL recognized by human autoantibodies and by rabbit hyperimmune antibodies. J Lipid Res 45:1859–1867

    Article  CAS  PubMed  Google Scholar 

  37. Miki M, Shimada K, Ohmura H, Kiyanagi T, Kume A, Sumiyoshi H, Fukao K, Inoue N, Mokuno H, Miyazaki T, Daida H (2009) Serum levels of remnant lipoprotein cholesterol and oxidized low-density lipoprotein in patients with coronary artery disease. J Cardiol 53:108–116

    Article  Google Scholar 

  38. Isoda K, Folco E, Marwali MR, Ohsuzu F, Libby P (2008) Glycated LDL increases monocyte CC chemokine receptor 2 expression and monocyte chemoattractant protein-1-mediated chemotaxis. Atherosclerosis 198:307–312

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Hörkkö S, Barnard J, Reynolds WF, Topol EJ, DiDonato JA, Hazen SL (2007) Protein carbamylation links inflammation,smoking, uremia and atherogenesis. Nat Med 13:1176–1184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) (grant number 16 K19201) (to A.S.). All authors thank Editage (Cactus Communications K.K.,Tokyo, Japan) for providing English-language editing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sato.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A., Yamazaki, Y. & Ebina, K. A Method for In Vitro Measurement of Oxidized Low-Density Lipoprotein in Blood, Using Its Antibody, Fluorescence-Labeled Heptapeptide and Polyethylene Glycol. J Fluoresc 27, 1985–1993 (2017). https://doi.org/10.1007/s10895-017-2137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2137-8

Keywords

Navigation